A researcher at Georgia Tech holds a perovskite-based solar cell. Credit: Rob Felt, Georgia Tech

Perovskite-based solar cells are all around great. They offer energy efficiencies similar to those of traditional silicon-based cells, are lightweight, simple and cheap to produce, and offer physical flexibility that could unlock a wide new range of installation methods and places, according to Georgia Teach Research Horizons.

The only problem: figuring out how to produce perovskite-based energy devices that last longer than a couple of months.

Researchers at Georgia Institute of Technology, University of California San Diego, and Massachusetts Institute of Technology may be closer to solving that problem. (more…)

Kang Xu on Fluorinating Interphases

Kang Xu, lead author.

“What is the most ideal [solid-electrolyte interphase] SEI or interphase that would enable the next generation of the battery chemistries?”

It was a question that had been lingering in the minds of Kang Xu, fellow of US Army Research Laboratory and team leader; Chunsheng Wang, University of Maryland chemical and biomolecular engineering department professor, as well as one of the most cited researchers of 2018; and Ying Shirley Meng, University of California, San Diego nanoengineering professor, fellow of The Electrochemical Society, and associate director of the International Battery Association.

Together, the trio set out to pursue this question, resulting in the publication of their paper “Perspective—Fluorinating Interphases.” (more…)

Lead engineers, Xiaobo Yin and Ronggui Yang.
Image credit: Glenn Asakawa/CU-Boulder

According to Forbes, engineers at the University of Colorado Boulder have created a new material that works like an air conditioning system for structures—cooling rooftops with zero energy consumption.

The material, about the same thickness as aluminum foil, is rolled across the surface of a rooftop, reflecting incoming solar energy back into space while simultaneously purging its own heat. Adding to its appeal, the material is adaptable and cost-effective for use in large-scale residential and commercial applications, as it can be manufactured on rolls. (more…)

It’s winter. And with that comes heavy coats, icy winds, and occasionally, below freezing temperatures: conditions not favorable for batteries.

Car batteries

Temperature extremes, in general, are not favorable to batteries. According to Lifewire, lead-acid batteries drop in capacity by about 20 percent in normal to freezing weather, and down to about 50 percent in temperatures that reach about -22 degrees Fahrenheit.

As a result, you may find your car battery giving out on any given winter morning. This is due to reduced capacity and increased draw from starter motors and accessories. This is because starter motors require a tremendous amount of amperage to get going: knocking out the capacity of even the newest batteries. (more…)

When it comes to growing crops, it’s a balancing act. You need just the right amount of sun, water, and soil composition to keep plants happy and blooming.

Researchers have recently discovered that light sensors might be able to help with that. According to New Food, the sensors work by actively measuring the various wavelengths of light coming off of crop leaves. These measurements are then used to calculate how much nitrogen crops need for optimal health. (more…)

Let’s face it. Anyone can benefit from a boost in their cell phone’s battery life, with the use of social media apps like Facebook, Instagram, Twitter, and the daily connectedness of email, texting, FaceTime, and selfies, it’s a surprise if our cell phone batteries last a day—which most often they don’t. Cut to, Apple’s newly released smart battery case that extends the life of their latest iPhones: the XS and XR. (more…)

Magnesium Batteries: New Discovery

University of Houston researchers Yan Yao, left, Hui Dong and Yanliang Leonard Liang. Photo Credit: University of Houston

A new version of high-energy magnesium batteries has been discovered by researchers from the University of Houston and the Toyota Research Institute of America, according to Phys.org. The battery operates with limited electrolytes while using an organic electrode, allowing it to store and discharge much more energy than earlier magnesium batteries.

Yan Yao, an ECS member, UH Student Chapter faculty advisor, and an associate professor of electrical and computer engineering at the UH, said the researchers identified chloride—in the commonly used electrolyte—as a contributor to magnesium batteries’ sluggish performance.

Yao, a principal investigator with the Texas Center for Superconductivity at UH, used the chloride-free electrolyte to test organic quinone polymer cathodes with a magnesium metal anode; the battery remaining stable through 2,500 cycles.

Magnesium batteries are particularly exciting as magnesium itself offers far more natural advantages over lithium. (more…)

Marshall Medoff shares his work with Lesley Stahl. Photo Credit: 60 Minutes

Marshall Medoff will make you think twice about what is possible. The 81-year-old took an interest in the environment 25 years ago and decided he was going to take it upon himself to stop global warming. With no science background or financial support, Medoff took it upon himself to “save the world.” For more than a decade, he worked alone out of a garage at a storage facility, educating himself and working towards his goal; his solution, transform inedible plant life into environmentally friendly transportation fuels in a clean, cost-effective alternative.

“Cellulose is everywhere. I mean, there’s just so much cellulose in the world and nobody had managed to use any of it,” explained Medoff, as he chatted with correspondent Lesley Stahl on 60 minutes. “I said, ‘Wow, if I can break through this, we can increase the resources of the world maybe by a third or more.’ Who knows?” (more…)

Holiday Warning: Deadly Batteries

With the holidays fast approaching, you may find yourself purchasing toys and gifts for some little ones. As you do, it’s important to keep some safety tips in mind. The National Capital Poison Center recently reported an increasing number of fatal button batteries ingestions over the years.

These coin-sized batteries have the potential to cause severe esophageal or airway burns when stuck in the esophagus, even after no initial signs of irritation directly after ingestion. Batteries stuck, including in the nose and ears, for over 2 hours can cause burns and serious complications.

Most commonly nickel-sized button batteries are the most hazardous as their size can allow them to become lodged in the throat and burn faster as a result.

However, there are measures that gift-givers and parents can take.

(more…)

Honda’s Battery Breakthrough

The search for the next level, new, and improved electric vehicle battery is an ongoing one. And it’s one Honda may have found. According to The Drive, the Japanese automaker claims to have developed a new battery chemistry called fluoride-ion that could outperform current lithium-ion batteries.

Honda says fluoride-ion batteries offer 10 times greater energy density, meaning more storage and range for electric vehicles, thanks to the low atomic weight of fluorine that makes fluoride-ion batteries’ increased performance possible. (more…)

  • Page 3 of 55