Lithium batteries made with asphalt could charge 10 to 20 times faster than the commercial lithium-ion batteries currently available.
The researchers developed anodes comprising porous carbon made from asphalt that show exceptional stability after more than 500 charge-discharge cycles.
A high-current density of 20 milliamps per square centimeter demonstrates the material’s promise for use in rapid charge and discharge devices that require high-power density.
“The capacity of these batteries is enormous, but what is equally remarkable is that we can bring them from zero charge to full charge in five minutes, rather than the typical two hours or more needed with other batteries,” says James Tour, the chair in chemistry and a professor of computer science and of materials science and nanoengineering at Rice University.
The Tour lab previously used a derivative of asphalt—specifically, untreated gilsonite, the same type used for the battery—to capture greenhouse gases from natural gas. This time, the researchers mixed asphalt with conductive graphene nanoribbons and coated the composite with lithium metal through electrochemical deposition.


A novel compound called 3Q conducts electricity and retains energy better than other organic materials currently used in batteries, researchers report.
Researchers have found a new method for finding lithium, used in the lithium-ion batteries that power modern electronics, in supervolcanic lake deposits.
In an effort to expand South Australia’s renewable energy supply, the state has looked to business magnate Elon Musk to build the