Funding Opportunity: Li Batteries

ATL-Logo_144_144_sNingde Amperex Technology Ltd. (ATL, China) is announcing a funding opportunity for researchers actively engaged in rechargeable lithium battery technologies. They are offering $100,000-$500,000 to selected projects addressing current problems associated with lithium metal anodes and proposing viable solutions for the commercialization of long-life, high-performance lithium metal secondary batteries for high energy density applications.

The steep demand for improved rechargeable batteries for use in consumer electronics and electric vehicles is driving the search for new battery electrode materials that will achieve higher energy densities. This funding opportunity seeks to develop scalable technologies for improving the performance of lithium metal anodes.

Please submit technical proposals along with a budget justification, confidentiality disclaimer and a cover page identifying the principle investigator, contact information, affiliations, project duration, total funding requested and submission date to Dr. KaiFu Zhong.

The deadline for submissions is July 31, 2015.

(more…)

ECS Battery Division Awards

Battery icon

The ECS Battery Division is now accepting award nominations.

Please help recognize outstanding contributions of The Electrochemical Society members to the science and technology of primary and secondary batteries and fuel cells through the Battery Division Awards Program.

Nominations are now being accepted for:

These annual awards have been established by the Division to encourage excellence in battery and fuel cell R&D, recognize promising young engineers and scientists and encourage their publication in the publications of the Electrochemical Society.

The deadline for nominations is March 30, 2015.

Before applying, please review the award rules and complete the appropriate form.

I strongly encourage you to submit your nominations. Thank you.

With my best regards,

Robert Kostecki
ECS Battery Division, Chair

Glass Coating for Li-S Battery

Researchers have investigated a strategy to prevent this “polysulfide shuttling” phenomenon by creating nano-sized sulfur particles, and coating them in silica (SiO2), otherwise known as glass.Image: Nanoscale

Researchers have investigated a strategy to prevent this “polysulfide shuttling” phenomenon by creating nano-sized sulfur particles, and coating them in silica (SiO2), otherwise known as glass.
Image: Nanoscale

Lithium-sulfur has been a hot topic in battery technology recently. Because of its ability to produce 10 times the amount of energy as a conventional battery, we’ve seen novel innovations such as the all solid state lithium-sulfur battery. Now, the li-sulfur battery is getting a glass coating to further improve its performance.

Researchers at the University of California, Riverside have applied a glass cage-like coating, along with graphene oxide, to the li-sulfur battery. This innovation was developed in order to overcome one of the major issues in commercializing the battery – polysulfides, which cause the battery’s capacity to decrease over its lifetime.

The cathode material traps the polysulfides in a very thin glass cage. Researchers used an organic precursor to construct the trapping barrier.

(more…)

Old Battery Type to Compete with Li-ion

When it comes to battery research and technology, people are constantly looking toward the lithium-ion battery to see the next big breakthrough. However, researchers at the chemical company BASF are showcasing and older battery type as a strong competitor against the li-ion.

BASF researchers are taking the nickel-metal hydride battery (NiMH) and giving it a boost to lead to cheaper electric cars. The assumption for electric car makers it that improvements in the lithium-ion battery will make cars cheaper and extend their driving range. While that may be true, the NiMH may also be able to do this with a little improvement.

The chemical company has already been able to double the amount of energy these old battery types can store, thus making them comparable to the lithium-ion. Researchers also state that there is still much room for improvement – with the potential to increase energy storage by an additional eight times.

Further, the batteries are set to cost roughly half as much as the cheapest lithium-ion battery.

(more…)

Paper-like Material to Boost Li-ion Batteries

The newly developed silicon nanofiber structure allow the battery to be cycled hundreds of times without significant degradation.Image: Nature Scientific Reports

The newly developed silicon nanofiber structure allows the battery to be cycled hundreds of times without significant degradation.
Image: Nature Scientific Reports

Electric cars and personal electronics may get the battery boost they need with this new development in lithium-ion batteries.

Researchers from the University of California, Riverside have created silicon nanofibers that are 100 times thinner than human hair, which will provide the potential to boost the amount of energy that can be delivered per unit weight of the batteries.

The research has been detailed in the paper “Towards Scalable Binderless Electrodes: Carbon Coated Silicon Nanofiber Paper via Mg Reduction of Electrospun SiO₂ Nanofibers.”

This from University of California, Riverside:

The nanofibers were produced using a technique known as electrospinning, whereby 20,000 to 40,000 volts are applied between a rotating drum and a nozzle, which emits a solution composed mainly of tetraethyl orthosilicate (TEOS), a chemical compound frequently used in the semiconductor industry. The nanofibers are then exposed to magnesium vapor to produce the sponge-like silicon fiber structure.

(more…)

Goodenough’s Big Idea for the Li-Ion Battery

Many of the most influential people of our time are also the most obscure. Take John Goodenough, for example. While he may not be a household name, everyday devices such as laptops and smartphones exist because of his work on lithium-ion batteries.

But even in his 90s, Goodenough isn’t done yet. He’s already invented the lithium-ion’s nervous system, which houses the cobalt-oxide cathode. This is the most important part of every lithium-ion battery, but Goodenough isn’t satisfied with this major scientific feat. Now, he’s looking to go one step further.

This from Quartz:

Today, at 92, Goodenough still goes to his smallish office every day at the University of Texas at Austin. That, he says, is because he’s not finished. Thirty-five years after his blockbuster, the electric car still can’t compete with the internal combustion engine on price. When solar and wind power produce electricity, it must be either used immediately or lost forever—there is no economic stationary battery in which to store the power. Meanwhile, storm clouds are gathering: Oil is again cheap but, like all cyclical commodities, its price will go back up. The climate is warming and becoming generally more turbulent.

Essentially, Goodenough is looking to create a super-battery.

(more…)

Voltage profiles of charge-discharge cycles of the Li/Li3PS4/S battery.Image: Journal of The Electrochemical Society

Voltage profiles of charge-discharge cycles of the Li/Li3PS4/S battery.
Image: Journal of The Electrochemical Society

A team from Japan’s Samsung R&D has worked in collaboration with researchers from the University of Rome to fabricate a novel all solid state Lithium-sulfur battery.

The paper has been recently published in the Journal of The Electrochemical Society. (P.S. It’s Open Access! Read it here.)

The battery’s capacity is around 1,600 mAhg⁻¹, which denotes an initial charge-discharge Coulombic efficiency approaching 99 percent.

Additionally, the battery possesses such beneficial properties as the smooth stripping-deposition of lithium. In contrast to other Li-S cells, the new battery’s activation energy of the charge transfer process is much smaller.

(more…)

IMLB Focus Issue Now Online

The development and commercialization of Li-ion batteries in recent decades is without doubt the most important and impressive success of modern electrochemistry.

The development and commercialization of Li-ion batteries in recent decades is without doubt the most important and impressive success of modern electrochemistry.

The Journal of The Electrochemical Society (JES) is publishing focus issues related to IMLB (International Meeting on Lithium Batteries) beginning with the 2014 meeting. Important to note is that this focus issue is completely Open Access, enabling a much broader audience to read these papers than would have access with a subscription-only issue.

Go to the table of contents now!

Twenty-one papers have here been selected for this focus issue. These papers touch upon many important new aspects in the field and illustrate well the wide spectrum of topics that were discussed at the IMLB 2014 meeting.

The most important international conference event in the Li battery community is the biannual International Meeting on Lithium Batteries; a conference series founded by Bruno Scrosati which began 33 years ago. The IMLB meeting can, in fact, be seen as among the most important conferences related to power sources in general.

(more…)

Smaller, More Powerful Li-Ion Battery

Researchers around the world are in a scientific race to develop a near-perfect lithium-ion battery, and a startup from the Massachusetts Institute of Technology (MIT) may have just unlocked the secret.

In 2012, Qichao Hu founded SolidEnergy – a startup that grew out of research and academics from MIT. Qichao started with battery technology that he and ECS member Donald Sadoway developed.

Now, the company is claiming to have built a lithium-ion battery that could change battery technology as we know it.

(more…)

Deep-Fried Graphene for Energy Storage

The 5-µm-diameter graphene balls in these scanning electron microscope images contain graphene nanosheets radiating outward from the center.Credit: Chem. Mater.

The 5-µm-diameter graphene balls in these scanning electron microscope images contain graphene nanosheets radiating outward from the center.
Credit: Chem. Mater.

Materials scientists have developed a new technique that could provide a simpler and more effective way to produce electrode materials for batteries and supercapacitors, which could potentially lead to devices with improved energy and power densities.

The researchers have unlocked this new battery technology by exposing tiny bits of graphene to a process that is very similar to deep-frying.

Prior to this development, scientists had difficulty using graphene in electrodes due to the difficulty encountered when processing the material. However, the researchers out of Yonsei University have learned how to harness the material’s electrical and mechanical properties while retaining its high surface are by using an alternative technique.

(more…)