In an effort to expand South Australia’s renewable energy supply, the state has looked to business magnate Elon Musk to build the world’s largest lithium-ion battery. The goal of the project is to deliver a grid-scale battery with the ability to stabilize intermittency issues in the area as well as reduce energy prices.
An energy grid is the central component of energy generation and usage. By changing the type of energy that powers that grid in moving from fossil fuels toward more renewable sources, the grid itself changes. Traditional electrical grids demand consistency, using fossil fuels to control production for demand. However, renewable sources such as wind and solar provide intermittency issues that traditional fossil fuels do not. Researchers must look at how we can deliver energy to the electrical grid when the sun goes down or the wind stops blowing. This is where energy storage systems, such as batteries, play a pivotal role.
In South Australia, Musk’s battery is intended to sustain 100 megawatts of power and store that energy for 129 megawatt hours. To put it in perspective, that is enough energy to power 30,000 homes and, according to Musk, will be three times as powerful as the world’s current largest lithium-ion battery.
Musk hopes to complete the project by December, stating that “It’s a fundamental efficiency improvement to the power grid, and it’s really quite necessary and quite obvious considering a renewable energy future.”


Researchers have developed a new kind of semiconductor alloy capable of capturing the near-infrared light located on the edge of the visible light spectrum.
In its first “
The U.S. Department of Energy spends
The
When a battery is used, electrically charged ions travel between electrodes, causing those electrodes to shrink and swell. For some time, researchers have wondered why the electrode materials – which are fairly brittle – don’t crack in the expansion and contraction styles.
A new mathematical model may help researchers design new materials for use in high-power batteries. According to the research team, the model could benefit chemists and materials scientists who typically rely on a trial and error method when developing new materials for batteries and capacitors.