ECS IE&EE Division Student Awards

ECS’s Industrial Electrochemistry and Electrochemical Engineering Division (IE&EE) has presented two distinguished student awards to be accepted at the 227th ECS Meeting this May in Chicago, IL.
divider_line
HasaniSadrabadi-blogThe IE&EE Student Achievement Award will be presented to Mohammad Mahdi Hasani-Sadrabadi of the Georgia Institute of Technology.

Hasani-Sadrabadi is currently a graduate researcher studying bioengineering at Georgia Tech. Aside from his current studies, Hasani-Sadrabadi spent time at the Swiss Federal Institute of Technology in Lausanne, where he developed microfluidic platforms for controlled synthesis of polymeric nanoparticles. In 2007, he began his research on fuel cells while at Amirkabir University of Technology. He continued to establish the Biologically-Inspired Developing Advanced Research (BiDAR) group as an international collaborative research time. His main research area of interest is the development of bio-inspired nanomaterials for energy and biomedical applications. Take a peek at Hasani-Sadrabadi’s award address: “Anhydrous High-Proton Conductor Based on Ionic Nanopeapods.”

The IE&EE Student Achievement Award was established in 1989 to recognize promising young engineers and scientists in the field of electrochemical engineering and to encourage participants to initiate careers in this field. (more…)

Brightman (right) and Hinds (left) have developed a novel electrode to boost green hydrogen research.Image: National Physical Laboratory

Brightman (left) and Hinds (right) have developed a novel electrode to boost green hydrogen research.
Image: National Physical Laboratory

ECS members Edward Brightman and Gareth Hinds of the National Physical Laboratory have developed a novel reference electrode that will aid in the development of hydrogen production technologies for renewable energy storage.

Both Brightman and Hinds will present their work on reference electrodes at the 227th ECS Meeting in Chicago this May. (Get an advanced look at that presentation here.)

Brightman and Hinds’ work deals with polymer electrolyte membrane water electrolysers (PEMWEs), which convert electricity and water into hydrogen and oxygen using two electrodes separated by a solid polymer electrolyte. While scientists have been looking and PEMWEs as a promising technology for some time now, researchers have been stifled in utilizing them due to the expensive catalyst materials needed and the general poor understanding of the degradation of these catalysts.

Now, Brightman and Hinds have tackled this issue by finding a way to produce PEMWEs with a cost-effective design and extended lifetime. This development allows for in situ measurement of the electrochemical process at the anode and the cathode.

(more…)

Prof. Sundaram has received degrees from the University of Kerala, Indian Institute of Science, and the Indian Institute of Technology.

Prof. Sundaram has received degrees from the University of Kerala, Indian Institute of Science, and the Indian Institute of Technology.

Kalpathy B. Sundaram of the University of Central Florida will be awarded the 2015 Dielectric Science and Technology Division Thomas D. Callinan Award at the ECS 227th Meeting in Chicago this May.

This prestigious award was established by ECS in 1967 to encourage excellence in dielectrics and insulation investigations, as well as recognize outstanding research contributions in the field.

Prof. Sundaram will receive this award for showing excellence in his field through his research in thin film technology for low dielectric constant and high-k dielectric materials. Both academic and industrial researchers and engineers cite Prof. Sundaram’s contributions in solving fundamental problems with high-k materials.

(more…)

ECS Talk – Richard Alkire

Long-time ECS member and past President of the Society (1985-1986), Dr. Alkire has been tremendously influential in the field of chemical engineering throughout his career.

His research activities include experimental investigations and mathematical modeling of localized corrosions, metal etching, high speed electrodeposition processes, porous electrodes, electro-organic synthesis, and plasma reactor design. Alkire received his M.S. and Ph.D. degrees in chemical engineering under ECS’s own Charles Tobias at the University of California Berkeley.

Take a moment to get to know him in this episode of ECS Talk.

Join Alkire and other top scientists in electrochemical and solid state science by joining the Society and attending our meetings!

And don’t forget to head over to the Digital Library to check out some of his published papers, including “Gravitational Effects on the Initial Stage of Cu Electrodeposition.”

ECS Talk – Ralph Brodd

Ralph Brodd has become a pillar of electrochemical science and technology over his 40 year career in the electrochemical energy conversion business.

He joined The Electrochemical Society in 1954 and served as President from 1981-1982. His ties to the Society run deep, beginning with his studies in 1950 at the University of Texas under ECS legend Norman Hackerman.

Take a moment to get to know him in this episode of ECS Talk.

Join Brodd and other top scientists in electrochemical and solid state science by joining the Society and attending our meetings!

Member Spotlight – Yossef Elabd

Dr. Yossef Elabd, professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University, has developed two fuel cell vehicle platforms for both present day enhancements and future innovation.Image: Texas A&M University

Dr. Yossef Elabd, professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University, has developed two fuel cell vehicle platforms for both present day enhancements and future innovation.
Image: Texas A&M University

The Electrochemical Society’s Yossef A. Elabd is using electrochemical science to work toward global sustainability with his new advancements in fuel cell car technology.

Elabd, an active member of ECS’s Battery Division, has developed two fuel cell vehicle platforms for both present day enhancements and future innovation – focusing not only on the science, but also the environment.

“I just want to drive my car with water vapor coming out the back of it,” Elabd said.

With this new technology and initiatives such as the ECS Toyota Young Investigator Fellowship, Elabd’s statement may become an achievable reality for many people in the near future.

The idea of the fuel cell vehicle is every environmentalist’s dream, but the current issues deal with the sustainability of the vehicle. The current fuel cell car uses a proton exchange membrane (PEM) electrolyte for its platinum-based electrodes.

(more…)

Member Spotlight – Alireza Mahdavifar

ECS student member Alireza Mahdavifar observes live bacteria moving inside the microfluidic channel.Image: Georgia Tech/The Poultry Site

ECS student member Alireza Mahdavifar observes live bacteria moving inside the microfluidic channel.
Image: Georgia Tech/The Poultry Site

Along with a team of researchers out of Georgia Tech, ECS student member Alireza Mahdavifar has designed and fabricated the prototype of a microfluidic device that exploits cell movement to separate live and dead bacteria during food processing.

The research, entitled “A Nitrocellulose-Based Microfluidic Device for Generation of Concentration Gradients and Study of Bacterial Chemotaxis,” has been recently published in the Journal of The Electrochemical Society.

The new development consists of a microfluidic device that exploits cell movement to separate live and dead bacterial during food processing. The device is novel due to the fact that while screening for foodborne pathogens, it can be difficult to distinguish between viable and non-viable bacteria. Mahdavifar and the team out of Georgia Tech responded to this issue by creating a device that can separate live cells from dead ones for real-time pathogen detection.

(more…)

Member Spotlight – Ryohei Mori

The aluminum-air battery has the potential to serve as a short-term power source for electric vehicles.Image: Journal of The Electrochemical Society

The aluminum-air battery has the potential to serve as a short-term power source for electric vehicles.
Image: Journal of The Electrochemical Society

A new long-life aluminum-air battery is set to resolve challenges in rechargeable energy storage technology, thanks to ECS member Ryohei Mori.

Mori’s development has yielded a new type of aluminum-air battery, which is rechargeable by refilling with either salt or fresh water.

The research is detailed in an open access article in the Journal of The Electrochemical Society, where Mori explains how he modified the structure of the previous aluminum-air battery to ensure a longer battery life.

Theoretically, metal-air technology can have very high energy densities, which makes it a promising candidate for next-generation batteries that could enable such things as long-range battery-electric vehicles.

However, the long-standing barrier of anode corrosion and byproduct accumulation have halted these batteries from achieving their full potential. Dr. Mori’s recently published paper, “Addition of Ceramic Barriers to Aluminum-Air batteries to Suppress By-product Formation on Electrodes,” details how to combat this issue.

(more…)

Member Spotlight – Jiaxing Huang

ECS member Jiaxing Huang used freshman-level chemistry to solve the solubility mystery of graphene oxide films.Image: Northwestern University

ECS member Jiaxing Huang used freshman-level chemistry to solve the solubility mystery of graphene oxide films.
Image: Northwestern University

Sometimes science can be extremely complex and commanded by technical expertise. But there are moments when one has to go back to his roots to find a more simple answer for a complex issue. That is what ECS member Jiaxing Huang – along with a team of Northwestern University researchers – has done in order to solve the mystery that surrounds the solubility of graphene oxide films.

For years, one question has puzzled the materials science community – why are graphene oxide (GO) films highly stable in water?

When submerged, GO sheets become negatively charged and repel, which should cause membrane to disintegrate. Though much to the confusion of the scientific community, when GO sheets are submerged they stabilize.

(more…)

Member Spotlight – Stephen Harris

X-ray absorption spectra, interpreted using first-principles electronic structure calculations, provide insight into the solvation of the lithium ion in propylene carbonate.Image: Rich Saykally, Berkeley Labs

X-ray absorption spectra, interpreted using first-principles electronic structure calculations, provide insight into the solvation of the lithium ion in propylene carbonate.
Image: Rich Saykally, Berkeley Labs

The Electrochemical Society’s Stephen Harris, along with a team of researchers from  Berkeley Lab, have found a possible avenue to a better electrolyte for lithium-ion batteries.

Harris – an expert on lithium-ion batteries and chemist at Berkeley Lab’s Materials Science Division – believes that he and his team have unveiled something that could lead to applying lithium-ion batteries to large-scale energy storage.

Researchers around the world know that in order for lithium-ion batteries to store electrical energy for the gird or power electric cars, they must be improved. The team at Berkeley decided to take on this challenge and found surprising results in the first X-ray absorption spectroscopy study of a model lithium electrode, which has provided a better understanding of the liquid electrolyte.

Previous simulations have predicted a tetrahedral solvation structure for the lithium-ion electrolyte, but the new study yields different results.

(more…)

  • Page 7 of 8