Member Spotlight – Breakthroughs in Corrosion

Eric Schindelholz of Sandia National Laboratory will be awarded the ECS Corrosion Division Morris Cohen Graduate Student Award at the upcoming 228th ECS Meeting for his contributions to methods for the study of atmospheric corrosion and his insights into the fundamentals and the factors controlling surface wetness and the carrion of steel.

In light of receiving the award, Schindelholz was able to sit down with local news station KOAT to talk about his work on such projects as the preservation of the Statue of Liberty and historic Pearl Harbor ships.

Learn more about his research at the 228th ECS Meeting and take a look at his scheduled talk, “Impact of Salt Deliquescence on the Humidity-Dependence of Atmospheric Corrosion.”

ECS’s Nate Lewis is propelling his vision of efficient and affordable alternative energy sources with the new development of an “artificial leaf” system that splits water through solar energy to create hydrogen fuel.

(PS: Make sure to catch Nate Lewis’ presentation this October at the fifth international Electrochemical Energy Summit held during the 228th ECS Meeting!)

“This new system shatters all of the combined safety, performance, and stability records for artificial leaf technology by factors of 5 to 10 or more,” says Lewis, a 33-year ECS member and scientific director of the Joint Center for Artificial Photosynthesis.

Shattering Water Splitting Records

He and his team, including postdoctoral scholar and ECS member Ke Sun, were able to achieve recording-setting outcomes through the development of a advice with three novel components: two electrodes, one photoanode and one photocathode, and a membrane.

This from Futurity:

The photoanode uses sunlight to oxidize water molecules, generating protons and electrons as well as oxygen gas. The photocathode recombines the protons and electrons to form hydrogen gas.


Two ECS Members Win Professorship Awards

Two key ECS members have recently received prestigious professorship awards from the University of Florida’s Department of Chemical Engineering. The department has recognized Mark Orazem and Fan Ren for their outstanding commitment to education and innovative research in chemical engineering.

Orazem_2011_cmykMark Orazem was awarded the ExxonMobil Gator Chemical Engineering Alumni Professorship for his excellence in research and tremendous impact in academia. Orazem, an ECS Fellow, joined the Society in 1978 and has previously been recognized for his excellence in student impact in 2012 when he received the ECS Henry B. Linford Award for Distinguished Teaching.

Orazem is a recognized expert on impedance spectroscopy. His research helps to provide valuable insight into such diverse systems as batteries, fuel cells, corroding metals, and human skin. His research ranges in scope—from assisting in the development of biosensors for companies such as Medtronic to engineering dewatering mining waste streams for Mosaic. He served for ten years as an associate editor for the Journal of The Electrochemical Society and authored the seminal Electrochemical Impedance Spectroscopy.

(PS: You can take a course instructed by him at the 228th ECS Meeting!)

Ren_FanFan Ren was awarded the Fred and Bonnie Edie Professorship, representing the highest standards of chemical engineering and serving as a role model for students. Ren is an ECS Fellow and an active member of the ECS Electronics & Photonics Division.

His groundbreaking research centers around electronic material and devices, where he pioneered the use of wide bandgap semiconductor sensors for chemical and biological detections. His acceptance lecture upon receiving the Gordon E. Moore Medal for Outstanding Achievement in Solid State Science and Technology in 2013 focused on this topic of researcher, detailing the cross-section between semiconductors and biosensors for medical applications such as glucose monitoring, biomarker detection for infectious diseases, and cancer diagnosis.

Pulse Check


Esther S. Takeuchi, past President of ECS and key contributor to the battery system that is still used to power life-saving implantable cardiac defibrillators

As a membership and development intern, my responsibilities include the organizing and electronic conversion of paper membership documents as ECS makes the transition from file cabinets to e-file folders. While going through the archive of members my heart skipped a beat, so to speak, as I read the profile of Esther S. Takeuchi. There are countless articles and information about Dr. Takeuchi, so I won’t press you with too many of her accolades. While being a member ECS and under the funding of Wilson Greatbatch she developed the Li/SVO (silvervanadium oxide) battery that powers the majority of the world’s lifesaving cardiac defibrillators.

Among the many members of ECS, Dr. Takeuchi stood out to me due in part to her humble beginnings. Despite her origin she accomplished momentous feats that impacted millions of lives. Energy Technologies Area states, “Dr.Takeuchi has been credited with holding more patents (currently over 140) than any other living woman.” Dr. Takeuchi’s continued membership with ECS helps promote and encourage the retention of current members within the Society, and may also attract new members who believe in the importance of this line of work. It’s a true benefit for society that members like Esther S. Takeuchi present their work to the world so that we can all benefit from it.

Let’s see how your heart is doing. Take your first two fingers (not your thumb) to press lightly over the blood vessels on your wrist. Count your pulse for 10 seconds and multiply by 6 to find your beats per minute. According to WebMD, the normal resting heart rate for a healthy adult ranges from 50-70 bpm. However for people with an irregular heart rhythm, commonly known as arrhythmia, this count may be off as your heart could be beating too quickly, too slowly, or otherwise abnormally. For serious cases, an implantable defibrillator or pacemaker is implanted into the chest or abdomen to help regulate and effectively shock the heart back into a normal rhythm again. If an electrical device needs to be placed inside of a living body, it had better work, not leak, and last for a very long time. Innovative, revolutionary, and life-changing are just a few thoughts that come to mind when realizing the type of contributions members like Dr. Takeuchi make to not only keep the passion beating in the hearts of ECS members, but the rest of the world as well. Check out the her video interview with ECS, or download it as a podcast, to learn more about Dr.Takeuchi’s innovative and monumental work.

[Image: State University of New York at Buffalo]

ECS Masters – Allen J. Bard

“I took to electrochemistry like a fish to water.” -Allen J. Bard

Regarded by many as the “father of modern electrochemistry,” Bard is best known for his work developing the scanning electrochemical microscope, co-discovering electrochemiluminescence, contributing to photoelectrochemistry of semiconductor electrodes, and co-authoring a seminal textbook in the field of electrochemistry.

Bard is considered one of today’s 50 most influential scientists in the world. He joined the Society in 1965 and became an ECS Honorary member in 2013. ECS established the Allen J. Bard Award in 2013 to recognize distinguished contributions to electrochemistry.

You can also listen to Bard’s interview as an audio podcast.

Find the rest of the ECS Masters series on YouTube.

ECS Masters – Esther Takeuchi

“Scientific discovery is a marathon, not a sprint. Sometimes you’re running faster or slower, but you always have to keep going.”
Esther Takeuchi

Esther Takeuchi was the key contributor to the battery system that powers life-saving cardiac defibrillators.

She currently holds more than 150 U.S. patents, more than any other American woman, which earned her a spot in the Inventors Hall of Fame. Her innovative work in battery research also landed her the National Medal of Technology and Innovation in 2008.

Make sure to subscribe to our YouTube channel!

You can also listen to this installment of ECS Masters as an audio podcast.

Member Spotlight – Chennupati Jagadish

jagadishECS Fellow Chennupati Jagadish has been awarded the IEEE Nanotechnology Pioneer Award for his outstanding contributions to compound semiconductor nanowire and quantum dot optoelectronics.

Dr. Jagadish is a Laureate Fellow and Distinguished Professor at the Australian National University, where he has made major advances in compound semiconductor quantum dot and nanowire growth techniques and optoelectronic devices.

Previously, Dr. Jagadish was awarded the ECS Electronics and Photonics Division Award for his excellence in electronics research outstanding technical contribution to the field of electronics science.

Throughout his scientific career, Dr. Jagadish has published more than 620 research papers—some of which can be found in the Digital Library—and has 5 U.S. patents.

Some of Dr. Jagadish’s current research focuses on nanostructured photovoltaics, which provides novel concepts to produce a more efficient solar cell.

Li-Ion Battery with Double the Life

Two-dimensional layered structure of graphene and its silicon carbide-free integration with silicon can serve as a prototype in advancing silicon anodes to commercially viable technology.Source: Nature Communications

Two-dimensional layered structure of graphene and its silicon carbide-free integration with silicon can serve as a prototype in advancing silicon anodes to commercially viable technology.
Source: Nature Communications

Researchers from various institutes across Korea have found a way to nearly double the life of the lithium-ion battery.

In an ever-pressing race to create a more efficient and longer-lasting battery for electronics, researchers across the globe are looking toward alternative materials to make the li-ion battery stronger. A team of researchers associated with Samsung’s Advanced Institute of Technology, including ECS member Jang Wook Choi, have combined silicon and graphene to yield an amazing increase in lithium-ion battery efficiency.


Graphene’s New Role in Water-Splitting

5592616537473The topics of climate change and the energy crisis are on the minds of many scientists working in the fields of energy storage and conversion. When looking toward the future, the development of more efficient and effective energy storage technologies is critical. Instead of our traditional “carbon cycle,” researchers are beginning to focus on the “hydrogen cycle” as a promising alternative.

With this, there been a lot of focus on water-splitting techniques. However, there are many challenges that this technology has to overcome before it reaches efficient levels on a large scale.

In order to help address complications associated with water-splitting, ECS member Qiang Zhang is leading a research group from Tsinghua University to help get closer to the ultimate goal of the “hydrogen cycle” by developing a novel graphene/metal hydroxide composite with superior oxygen evolution activity.


Alvin J. Salkind

Alvin J. Salkind in an undated photo.

“My nature is curiosity and The Electrochemical Society has gone a long way to satisfy my curiosity…” — A. Salkind

About two years ago, ECS began a conversation with Prof. Salkind about his proposal for a revised edition of Alkaline Storage Batteries. In the proposal we presented to John A. Wiley & Sons (our partner in publishing monographs), I said it was from “one of the ECS ‘giants’.”

That was quite true about Dr. Salkind. When I first met him (and ever after), I was engaged by his tremendous intellect, his wide-ranging curiosity, and his still being very much involved with his science.

Prof. Salkind was an emeritus member of ECS, having joined in 1952 as a student. He served the Society very well — as a Chair of our Battery Division and on an innovative committee called the New Technology Subcommittee. He became an ECS Fellow only in 2014, but over the course of his many years of involvement with ECS, he organized symposia, edited proceedings volumes, and chaired many committees.


Cover of the Alkaline Storage Batteries book from 1969

In conjunction with developing a new edition of the Alkaline Storage Batteries book, Prof. Salkind began visiting ECS headquarters. We were immediately drawn in by his still-vibrant enthusiasm for the field and his fascinating anecdotes about other ECS notables in the field: Vladimir Bagotsky, Ernest Yeager, and Vittorio de Nora, among others. He was always willing to teach and to share. We were very fortunate to be able to “capture” Prof. Salkind in a very recent interview at the HQ office.

(Listen to it as a podcast. Watch the video.)

Professor Salkind generously considered ECS his technological home and brought his important monograph to be published by ECS. ECS is grateful to Dr. Salkind for his years of service to the Society and his contributions to the entire battery community; and we thank his family for supporting this remarkable person and sharing him with ECS.