Bacteria-powered Paper Battery

Batteries made of lemons and oranges have been gracing grade school laboratories for years. In addition to fruit-based batteries, now you can make a battery using spit.

The new paper-based bacteria-powered battery can be activated with a single drop of saliva, generating enough power to power an LED light for around 20 minutes.

“The battery includes specialized bacterial cells, called exoelectrogens, which have the ability to harvest electrons externally to the outside electrode,” Seokheun Choi, co-author of the new study, tells Nexus Media. “For the long-term storage, the bacterial cells are freeze-dried until use. This battery can even be used in challenging environmental conditions like desert areas. All you need is an organic matter to rehydrate and activate the freeze-dried cells.”

(more…)

Researchers at Los Alamos National Laboratory (LANL) are taking a closer look at fuel cell catalysts in hopes of finding a viable alternative to the expensive platinum and platinum-group metal catalysts currently used in fuel cell electrodes. Developments in this area could lead to more affordable next-generation polymer electrolyte fuel cells for vehicles.

The research, led by ECS fellow Piotr Zelenay, looks at the fuel cell catalysts at the atomic level, providing unique insight into the efficiency of non-precious metals for automotive and other applications.

“What makes this exploration especially important is that it enhances our understanding of exactly why these alternative catalysts are active,” Zelenay says. “We’ve been advancing the field, but without understanding the sources of activity; without the structural and functional insights, further progress was going to be very difficult.”

This from LANL:

Platinum aids in both the electrocatalytic oxidation of hydrogen fuel at the anode and electrocatalytic reduction of oxygen from air at the cathode, producing usable electricity. Finding a viable, low-cost PGM-free catalyst alternative is becoming more and more possible, but understanding exactly where and how catalysis is occurring in these new materials has been a long-standing challenge. This is true, Zelenay noted, especially in the fuel cell cathode, where a relatively slow oxygen reduction reaction, or ORR, takes place that requires significant ‘loading’ of platinum.

(more…)

Just a few weeks after France vowed to get gasoline and diesel powered cars off the road by 2040, Australia has joined in on the conversation of transportation transformation. According to a statement, Queensland is looking to kick off an electric vehicle revolution with the implementation of an “electric super highway.”

The highway will incorporate 18 towns and cities in Australia. Officials expect the highway to be completed within the next six months, stretching 1,240 miles along the Queensland’s east coast loaded with 18 fast-charging stations that can charge a car in 30 minutes, allowing electric vehicle drivers to make it from the state’s southern border to the far north.

“EVs can provide not only a reduced fuel cost for Queenslanders, but an environmentally-friendly transport option, particularly when charged from renewable energy,” says Environment Minister and Acting Main Roads Minister Steven Miles. “The Queensland Electric Super Highway has the potential to revolutionize the way we travel around Queensland in the future.”

(more…)

GridResearchers from Lappeenranta University of Technology (LUT) and VTT Technical Research Centre of Finland have successfully created food out of electricity and carbon dioxide, which they hope could one day be used to help solve world hunger.

According to reports, the single-cell protein can be produced wherever renewable energy is available, with uses ranging from food to animal feed.

“In practice, all the raw materials are available from the air. In the future, the technology can be transported to, for instance, deserts and other areas facing famine,” co-author of the research, Juha-Pekka Pitkanen, said in a statement. “One possible alternative is a home reactor, a type of domestic appliance that the consumer can use to produce the needed protein.”

The researchers achieved this result by exposing those raw materials and putting them in a small “protein reactor.” After exposing it to electrolysis, chemical decomposition occurs. After about two weeks, one gram of powder made of 50 percent protein and 25 percent carbohydrate.

(more…)

By: Amy Myers Jaffe, University of California, Davis and Lewis Fulton, University of California, Davis

Electric VehiclesWhen will cars powered by gas-guzzling internal combustion engines become obsolete? Not as soon as it seems, even with the latest automotive news out of Europe.

First, Volvo announced it would begin to phase out the production of cars that run solely on gasoline or diesel by 2019 by only releasing new models that are electric or plug-in hybrids. Then, France and the U.K. declared they would ban sales of gas and diesel-powered cars by 2040. Underscoring this trend is data from Norway, as electric models amounted to 42 percent of Norwegian new car sales in June.

European demand for oil to propel its passenger vehicles has been falling for years. Many experts expect a sharper decline in the years ahead as the shift toward electric vehicles spreads across the world. And that raises questions about whether surging electric vehicle sales will ultimately cause the global oil market, which has grown on average by 1 to 2 percent a year for decades and now totals 96 million barrels per day, to decline after hitting a ceiling.

Energy experts call this concept “peak oil demand.” We are debating when and if this will occur.

(more…)

Water splittingScientists have created a single catalyst that could simplify the process of splitting water into hydrogen and oxygen to produce clean energy.

The electrolytic film is a three-layer structure of nickel, graphene, and a compound of iron, manganese, and phosphorus. The foamy nickel gives the film a large surface, the conductive graphene protects the nickel from degrading and the metal phosphide carries out the reaction.

The team of scientists developed the film to overcome barriers that usually make a catalyst good for producing either oxygen or hydrogen, but not both simultaneously.

“Regular metals sometimes oxidize during catalysis,” says Kenton Whitmire, a professor of chemistry at Rice University. “Normally, a hydrogen evolution reaction is done in acid and an oxygen evolution reaction is done in base. We have one material that is stable whether it’s in an acidic or basic solution.”

The discovery builds upon the researchers’ creation of a simple oxygen-evolution catalyst revealed earlier this year. In that work, the team grew a catalyst directly on a semiconducting nanorod array that turned sunlight into energy for solar water splitting.

(more…)

OceanScientists have found that a common enzyme can speed up—by 500 times—the rate-limiting part of the chemical reaction that helps the Earth lock away, or sequester, carbon dioxide in the ocean.

“While the new paper is about a basic chemical mechanism, the implication is that we might better mimic the natural process that stores carbon dioxide in the ocean,” says lead author Adam Subhas, a California Institute of Technology (Caltech) graduate student.

Simple problem, complex answer

The researchers used isotopic labeling and two methods for measuring isotope ratios in solutions and solids to study calcite—a form of calcium carbonate—dissolving in seawater and measure how fast it occurs at a molecular level.

It all started with a very simple, very basic problem: measuring how long it takes for calcite to dissolve in seawater.

“Although a seemingly straightforward problem, the kinetics of the reaction is poorly understood,” says Berelson, professor of earth sciences at the University of Southern California Dornsife College of Letters, Arts, and Sciences.

(more…)

Carbon dioxideThe global development of industry, technology, and the transportation sector has resulted in massive consumption of fossil fuels. As these fuels are burned, emissions are released—namely carbon dioxide. According to the U.S. Environmental Protection Agency, combustion of petroleum-based products resulted in 6,587 million metric tons of carbon dioxide released into the environment in 2015. But what if we could capture the greenhouse gas and not only convert it, but potentially make a huge profit?

That’s exactly what ECS member Stuart Licht is looking to do.

In a new study, Licht and his team demonstrate using carbon dioxide and solar thermal energy to produce high yields of millimeter-lengths carbon nanotube (CNT) wool at a cost of $660 per ton. According to marketplace values, these CNTs, which have applications ranging from textiles to cement, could then be sold for up to $400,000 per ton.

“We have introduced a new class of materials called ‘Carbon Nanotube Wool,’ which are the first CNTs that can be directly woven into a cloth, as they are of macroscopic length and are cheap to produce,” Licht, a chemistry professor at George Washington University, tells Phys.org. “The sole reactant to produce the CNT wools is the greenhouse gas carbon dioxide.”

(more…)

Solar PanelResearchers have created a concentrating photovoltaic (CPV) system with embedded microtracking that is capable of producing 50 percent more energy per day than the standard silicon solar cells.

“Solar cells used to be expensive, but now they’re getting really cheap,” says Chris Giebink, an assistant professor of electrical engineering at Penn State.

“As a result, the solar cell is no longer the dominant cost of the energy it produces. The majority of the cost increasingly lies in everything else—the inverter, installation labor, permitting fees, etc.—all the stuff we used to neglect,” he says.

This changing economic landscape has put a premium on high efficiency. In contrast to silicon solar panels, which currently dominate the market at 15 to 20 percent efficiency, concentrating photovoltaics focus sunlight onto smaller, but much more efficient solar cells like those used on satellites, to enable overall efficiencies of 35 to 40 percent.

(more…)

BatteryLithium-ion batteries power a vast majority of the world’s portable electronics, from smartphones to laptops. A standard lithium-ion batteries utilizes a liquid as the electrolyte between two electrodes. However, the liquid electrolyte has the potential to lead to safety hazards. Researchers from MIT believe that by using a solid electrolyte, lithium-ion batteries could be safer and able to store more energy. However, most research in the area of all-solid-state lithium-ion batteries has faced significant barriers.

According to the team from MIT, a reason why research into solid electrolytes has been so challenging is due to incorrect interpretation of how these batteries fail.

This from MIT:

The problem, according to this study, is that researchers have been focusing on the wrong properties in their search for a solid electrolyte material. The prevailing idea was that the material’s firmness or squishiness (a property called shear modulus) determined whether dendrites could penetrate into the electrolyte. But the new analysis showed that it’s the smoothness of the surface that matters most. Microscopic nicks and scratches on the electrolyte’s surface can provide a toehold for the metallic deposits to begin to force their way in, the researchers found.

(more…)

ECS
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.