The global development of industry, technology, and the transportation sector has resulted in massive consumption of fossil fuels. As these fuels are burned, emissions are released—namely carbon dioxide. According to the U.S. Environmental Protection Agency, combustion of petroleum-based products resulted in 6,587 million metric tons of carbon dioxide released into the environment in 2015. But what if we could capture the greenhouse gas and not only convert it, but potentially make a huge profit?
That’s exactly what ECS member Stuart Licht is looking to do.
In a new study, Licht and his team demonstrate using carbon dioxide and solar thermal energy to produce high yields of millimeter-lengths carbon nanotube (CNT) wool at a cost of $660 per ton. According to marketplace values, these CNTs, which have applications ranging from textiles to cement, could then be sold for up to $400,000 per ton.
“We have introduced a new class of materials called ‘Carbon Nanotube Wool,’ which are the first CNTs that can be directly woven into a cloth, as they are of macroscopic length and are cheap to produce,” Licht, a chemistry professor at George Washington University, tells Phys.org. “The sole reactant to produce the CNT wools is the greenhouse gas carbon dioxide.”


Researchers have created a concentrating photovoltaic (CPV) system with embedded microtracking that is capable of producing 50 percent more energy per day than the standard silicon solar cells.
Lithium-ion batteries power a vast majority of the world’s portable electronics, from smartphones to laptops. A standard lithium-ion batteries utilizes a liquid as the electrolyte between two electrodes. However, the liquid electrolyte has the potential to lead to
In an effort to expand South Australia’s renewable energy supply, the state has looked to business magnate Elon Musk to build the
Around the world, the transportation sector is evolving. Globally, electric vehicle (EV) sales have
Scientists have created a nanoscale light detector that can convert light to energy, combining both a unique fabrication method and light-trapping structures.
Earth’s climate is changing rapidly. We know this from billions of observations, documented in thousands of journal papers and texts and
In an effort to develop a more affordable, plentiful alternative to lithium-ion batteries, researchers from Purdue University are pursuing rechargeable potassium based batteries, demonstrating a way to derive carbon for battery electrodes from old tires.
Science is messy, but it doesn’t have to be dirty.