In 2016, Solar Impulse 2 was the first solar-powered electrified aircraft to make a trip around the world. But that aircraft wasn’t the first to partake in electric flight, nor will it be the last.
Since the development of the battery-powered Militky MB-E1 in the early 1970s, there has been excitement surrounding the promise of an electric aircraft. However, many of the concepts being floated around by aerospace companies assume huge improvements in current battery technology.
The problem? According to a recently published article in Wired, current battery technology does not offer the power-to-weight ratio needed to make battery-powered planes feasible.
But battery technology has taken leaps over the past few years. Energy storage devices are become more efficient and lighter simultaneously. But how long will it take to be able to pack enough energy into a device while remaining light enough to glide through the sky?
“There’s already been a lot of progress,” Venkat Srinivasan, battery expert with Argonne National Lab, told Wired. “It’s not the same ballpark as Moore’s law progress because it’s chemistry, not electronics, but it’s still very good.”


The U.S. Department of Energy spends
The
U.S. Secretary of Energy Rick Perry in April
The consumer demand for seamless, integrated technology is on the rise, and with it grows the Internet of Things, which is expected to grow to a
Lithium-ion batteries power a vast majority of the world’s portable electronics, but the magnification of recent safety incidents have some looking for new ways to keep battery-related hazards at bay. The U.S. Navy is one of those groups, with chemists in the U.S. Naval Research Laboratory (NRL) unveiling a new battery, which they say is both safe and rechargeable for applications such as electric vehicles and ships.
Like all things, batteries have a finite lifespan. As batteries get older and efficiency decreases, they enter what researchers call “capacity fade,” which occurs when the amount of charge your battery could once hold begins to decrease with repeated use.
After an unusually intense heat wave, downpour, or drought, Noah Diffenbaugh and his research group inevitably get phone calls and emails asking whether human-caused climate change played a role.
Researchers from Columbia University School of Engineering and Applied Science recently developed a method that could result in safer, longer-lasting, bendable lithium-ion batteries. To do this, the team applied ice-templating to control the structure of the solid electrolyte for lithium-ion batteries.