Improving Energy Storage

Nanoparticles have been central to many recent developments, including computing, communications, energy, and biology. However, because nanoparticles are hard to observe, it’s often difficult to pick the best shapes and sizes to perform specific tasks at optimal capacity.

That may be a problem no longer thanks to research out of Stanford University, where researchers gazed inside phase-changing nanoparticles for the first time – allowing them to understand how shape and crystallinity can have dramatic effects on performance.

Practically, this means that the design of energy storage materials could begin to change.

Take the lithium-ion battery, which stores and releases energy due to the electrode’s ability to sustain large deformations over several charge and discharge cycles without degrading. By nanosizing the electrode, researchers recently improved upon the efficiency process.

(more…)

Reginald Penner

Reginald Penner (pictured) and doctoral candidate developed a nanowire-based batter that can be charged hundreds of thousands of times.
Image: Daniel A. Anderson/UC Irvine

Researchers at the University of California, Irvine may have just developed the ever-lasting battery.

A recent study, published in ACS Energy Letters, details a nanowire-based battery material that can be recharged hundreds of thousands of times – making more realistic the idea of a battery that would never need to be replaced.

Potential applications for the battery range from computers and smartphones to cars and spacecrafts.

Highly-conductive nanowires have always been thought appropriate for battery design, but were held back by the fact that their fragility causes them to breakdown after multiple charging cycles. By coating a gold nanowire in a manganese dioxide shell and encasing the assembly in an electrolyte, the researchers have turn the frail structure into something that has almost infinite recharging capabilities.

Mya Le Thai, a doctoral candidate, led the charge on the research – cycling the tested electrode up to 200,000 times over a three month period without loss of capacity or damage to the nanowire.

“Mya was playing around, and she coated this whole thing with a very thin gel layer and started to cycle it. She discovered that just by using this gel, she could cycle it hundreds of thousands of times without losing any capacity,” said Reginald M. Penner, chair of UC Irvine’s chemistry department and ECS member. “That was crazy, because these things typically die in dramatic fashion after 5,000 or 6,000 or 7,000 cycles at most.”

Thai believes that this study shows that nanowire-based batteries could be commercially viable, and potentially the next big break in battery technology.

AA Battery CarThere may soon be a shift in the transportation sector, where traditional fossil fuel-powered vehicles become a thing of the past and electric vehicles start on their rise to dominance.

In fact, we may be seeing that shift already. Last year, battery prices fell 35 percent, which contributed to the 60 percent increase in sales of electric vehicles. If that growth continues along the same path, electric vehicles have the potential to displace oil demand of two million barrels a day as early as 2023.

The key technology at the heart of these vehicles is energy storage. Whether it be the lithium-ion, lithium-air, or fuel cells – electric vehicles depend on affordable, highly efficient electrochemical energy storage to operate.

But what if the future of these vehicles depend on a different type of energy technology?

Saturday Night Live recently made a play on the future of electric vehicles by imagining a world where cars didn’t run off of a singular, efficient battery — but rather tons of AA batteries.

Check out what a car powered entirely out of AA batteries could look like.

Wild mushrooms have recently made a surprising (but not unwelcome) foray into the battery realm.

In a new study, researchers from Purdue University derived promising carbon fibers from a wild mushroom and modified them with nanoparticles to cook up new battery anodes that outperform conventional graphite electrodes for lithium-ion batteries.

(READ: “Wild Fungus Derived Carbon Fibers and Hybrids as Anodes for Lithium-Ion Batteries“)

Outperforming traditional anodes

“Current state-of-the-art lithium-ion batteries must be improved in both energy density and power output in order to meet the future energy storage demand in electric vehicles and grid energy-storage technologies,” said Vilas Pol, ECS member and associate professor at Purdue. “So there is a dire need to develop new anode materials with superior performance.”

This from Purdue University:

[The researchers] have found that carbon fibers derived from Tyromyces fissilis and modified by attaching cobalt oxide nanoparticles outperform conventional graphite in the anodes. The hybrid design has a synergistic result.

(more…)

While we may have a good understanding of battery application and potential, we still lack a great deal of knowledge about what is actually happening inside a battery cell during cycles. In an effort to build a better battery, ECS members from the U.S. Department of Energy’s Argonne National Laboratory have made a novel development to improve battery performance testing.

Future of energy

The team’s work focuses on the design and placement of the reference electrode (RE), which measure voltage of the individual electrodes making up a battery cell, to enhance the quality of information collected from lithium-ion battery cells during cycles. By improving our knowledge of what’s happening inside the battery, researchers will more easily be able to develop longer-lasting batteries.

“Such information is critical, especially when developing batteries for larger-scale applications, such as electric vehicles, that have far greater energy density and longevity requirements than typical batteries in cell phones and laptop computers,” said Daniel Abraham, ECS member and co-author of the newly published study in the Journal of The Electrochemical Society. “This kind of detailed information provides insight into a battery cell’s health; it’s the type of information that researchers need to evaluate battery materials at all stages of their development.”

(more…)

PV Hybrid

A research team aims to make a battery and solar cell hybrid out of two single systems.
Image: Lunghammer – TU Graz

People across the globe are looking toward renewable solutions to change the landscape of energy. But what happens when the sun goes down and the wind stops blowing? In order to guarantee green energy that is consistent, reliable energy storage systems are critical.

“Currently, single systems of photovoltaic cells which are connected together — mostly lead-based batteries and vast amounts of cable — are in use,” said Ilie Hanzu, TU Graz professor and past member of ECS. “We want to make a battery and solar cell hybrid out of two single systems which is not only able to convert electrical energy, but also store it.”

The idea of a battery and solar cell hybrid is completely novel scientific territory. With this project, entitled SolaBat, the team hopes to develop a product that has commercial applications. For this, the scientists will have to develop the perfect combination of functional materials.

“In the hybrid system, high-performance materials share their tasks in the solar cell and in the battery,” Hanzu said. “We need materials that reliably fulfill their respective tasks and that are also electrochemically compatible with other materials so that they work together in one device.”

(more…)

Researchers have found a way to use rust to build a solar-powered battery.Image: Flickr

Researchers have found a way to use rust to build a solar-powered battery.
Image: Diego Torres Silvestre

What happens when corrosion meets energy? For researchers at Stanford University, the marriage of those two uniquely electrochemical topics could yield an answer to large-scale solar power storage.

The question of how to store solar power when the sun goes down has been on the forefront of scientific discussion. While electrochemical energy storage devices exist, they are typically either too expensive to work on a large-scale or not efficient enough.

Building a solar-powered battery

New research shows that metal oxides, such as rust, can be fashioned into solar cells capable of splitting water into hydrogen and oxygen. The research could be looked at revelatory, especially when considering large-scale storage solutions, because of its novel heat attributes.

While we knew the promising solar power potential of metal oxides before, we believed that the efficiency of cells crafted from these materials would be very low. The new study, however, disproves that theory.

The team showed that as the cells grow hotter, efficiency levels increase. This is a huge benefit when it comes to large-scale, solar energy conversion and it the polar opposite of the traditional silicon solar cell.

“We’ve shown that inexpensive, abundant, and readily processed metal oxides could become better producers of electricity than was previously supposed,” says William Chueh, an assistant professor of materials science and engineering.

(more…)

Battery technology for water desalination

Inspired by the principles of the sodium ion battery, Kyle Smith (right) is re-appropriating technology to make huge strides in water desalination.
Image: L. Brian Stauffer

Battery applications range from powering electronic devices to storing energy harvested from renewable sources, but batteries have a range of applications beyond the obvious. Now, researchers from the University of Illinois at Urbana-Champaign are taking existing battery technology and applying it to efforts in water desalination.

The researchers have published the open access article in the Journal of The Electrochemical Society.

“We are developing a device that will use the materials in batteries to take salt out of water with the smallest amount of energy that we can,” said Kyle Smith, ECS member and assistant professor at the University of Illinois at Urbana-Champaign. “One thing I’m excited about is that by publishing this paper, we’re introducing a new type of device to the battery community and to the desalination community.”

Water desalination technologies have flourished as water needs have grown globally. This could be linked to growing populations or drought. However, because of technical hurdles, wide-spread implementation of these technologies has been difficult. However, the new technologies developed could combat that issue by using electricity to draw charged salt ions out of the water.

(more…)

Uphill Battle for Electric Cars

With plunging oil prices, it is proving to be more difficult than ever to entice buyers into purchasing an electric vehicle. While the low oil prices may be good for consumers’ gas tanks, the transportation sector continues to account for 27 percent of the United States’ greenhouse gas emissions.

The question then arises of how electric car manufacturers can steer folks back toward electric vehicles and away from gas-guzzling cars?

(MORE: Read Interface: PV, EV, and Your Home)

Impact of falling oil prices

“It definitely makes the transition to sustainable energy more difficult,” said Elon Musk, Tesla CEO, at a business conference in Hong Kong about the impact of the free-falling oil prices.

Tesla rose to prominence in 2003 when oil prices soared, making electric vehicles all the more tempting. With oil prices continually on the decline, it’s now up to companies like Tesla to compel buyers and stress the importance of transitioning toward cleaner vehicles.

New features for electric cars

For companies like Tesla, that means developing things like autonomous cars with “summon” features – allowing the user to call their car just like a pet. Even aesthetic aspects have become more important, with Tesla focusing on futuristic designs.

“What we’re aspiring to do is to make the cars so compelling that even with lower gas prices, it’s still the car you want to buy,” Musk said.

(more…)

Importance of Energy Storage

While society as a whole is moving toward cleaner, more renewable energy sources, there is one key component that is typically glossed over in the energy technology conversation: energy storage.

Developments in solar and wind are critical in the battle against climate change, but without advances in energy storage, our efforts may fall short. What happens when the sun isn’t shining or the wind isn’t blowing?

The folks at Popular Science are providing a friendly analogy to explain the the importance of energy storage.

Fighting the good fight in energy technology? Present your work at IMLB! Submit your abstracts today!