Most Read Focus Issue of 2017

To date, the ECS Digital Library contains over 40 completed focus issues across the Journal of The Electrochemical Society and the ECS Journal of Solid State Science and Technology.

All of these issues, devised to highlight rapidly accelerating areas of scientific and technological interest, continue to attract significant attention from ECS’s readership.

During 2017, the average ECS focus issue received 12,495 full text downloads.

One particular focus issue of 2017, however, proved no average issue, acquiring nearly 9.5 times that amount.

The JES Focus Issue of Selected Papers from IMLB 2016 with Invited Papers Celebrating 25 Years of Lithium Ion Batteries amassed a whopping 119,465 full text downloads over the course of 2017, securing its place not only as the most read focus issue of the year, but also as the most read focus issue in ECS history.

(more…)

By: Neal Dawson-Elli, Seong Beom Lee, Manan Pathak, Kishalay Mitra, and Venkat R. Subramanian

This article refers to a recently published open access paper in the Journal of The Electrochemical Society, “Data Science Approaches for Electrochemical Engineers: An Introduction through Surrogate Model Development for Lithium-Ion Batteries.”

Electrochemistry and Data Science

Image via Neal Dawson-Elli
(Click to enlarge.)

Data science is often hailed as the fourth paradigm of science. As the computing power available to researchers increases, data science techniques become more and more relevant to a larger group of scientists. A quick literature search for electrochemistry and data science will reveal a startling lack of analysis done on the data science side. This paper is an attempt to help introduce the topics of data science to electrochemists, as well as to analyze the power of these methods when combined with physics-based models.

At the core of the paper is the idea that one cannot be successful treating every problem as a black box and applying liberal use of data science – in other words, despite its growing popularity, it is not a panacea. The image shows the basic workflow for using data science techniques – the creation of a dataset, splitting into training-test pairs, training a model, and then evaluating the model on some task. In this case, the training data comes from many simulations of the pseudo two-dimensional lithium-ion battery model. However, in order to get the best results, one cannot simply pair the inputs and outputs and train a machine learning model on it. The inputs, or features, must be engineered to better highlight changes in your output data, and sometimes the problem needs to be totally restructured in order to be successful.

(more…)

Sensor DivisionDeadline: March 1, 2018

The ECS honors and awards program promotes technical achievements in electrochemistry and solid-state science and technology. The program also recognizes exceptional service to the Society. Recognition opportunities exist in the following categories: Society awards, division awards and section awards.

The Sensor Division Outstanding Achievement Award was established in 1989 to recognize outstanding achievement in research and/or technical contributions to the field of sensors and to encourage work excellence in the field. The award consists of a framed certificate and a $1,000 prize. The next award winner will be recognized at the 234th ECS biannual meeting, also known as AiMES2018, which takes place in Cancun, Mexico from September 30 thru October 4.

The 2016 winner of this award was Rangachary Mukundan of Los Alamos National Laboratory who presented an award talk, “Mixed Potential Sensors for Hydrogen Safety and Automotive Applications at our last PRiME meeting in Hawaii.”

(more…)

Scientists have developed energy efficient, ultra-thin light-emitting diodes (LEDs) for next-generation communication technologies.

Light sources that reliably convert electrical to optical signals are of fundamental importance to information processing technologies. Energy-efficient and high-speed LEDs that can be integrated onto a microchip and transmit information are one of the key elements in enabling high volume data communication.

Two-dimensional (2D) semiconductors, graphene-like, atomically thin materials, have recently attracted significant interest due to their size (just a few atoms thick), well-defined light emission properties, and their prospects for on-chip integration. While, in recent years, researchers have succeeded in fabricating LEDs based on these materials, realizing efficient light emission has remained a challenge.

An efficient LED device converts most of its electrical power input into light emission (i.e., with minimal losses due to conversion into other forms of energy such as heat). Previous studies on LEDs based on 2D semiconductors reported that a large amount of electrical current is needed to trigger light emission. This means that a substantial fraction of the input electrical power is dissipated as heat instead of generating light.

(more…)

Posted in Technology

Leah Ellis Student AwardThe ECS honors and awards program promotes technical achievements in electrochemistry and solid-state science and technology. The program also recognizes exceptional service to the Society. Recognition opportunities exist in the following categories: Society awards, division awards and section awards.

The Canada Section Student Award was established in 1987 to recognize promising young engineers and scientists in the field of electrochemical power sources. The award is intended to encourage the recipients to initiate or continue careers in the field. The award recipient will receive a $1,500 (CAD) prize and have the chance to present an award talk to section constituents. The next award winner will be recognized at the Canada Section annual meeting in fall 2018.

(more…)

The ECS Transactions (ECST) enhanced issues for the 233rd ECS Meeting in Seattle, WA, have just opened to submissions.

The following Seattle symposia will be publishing enhanced issues of ECST:

(more…)

By: Clifford Johnson, University of Southern California – Dornsife College of Letters, Arts and Sciences

The Dialogues

Science is one thread of culture – and entertainment, including graphic books, can reflect that. ‘The Dialogues,’ by Clifford V. Johnson (MIT Press 2017), CC BY-ND

How often do you, outside the requirements of an assignment, ponder things like the workings of a distant star, the innards of your phone camera, or the number and layout of petals on a flower? Maybe a little bit, maybe never. Too often, people regard science as sitting outside the general culture: A specialized, difficult topic carried out by somewhat strange people with arcane talents. It’s somehow not for them.

But really science is part of the wonderful tapestry of human culture, intertwined with things like art, music, theater, film and even religion. These elements of our culture help us understand and celebrate our place in the universe, navigate it and be in dialogue with it and each other. Everyone should be able to engage freely in whichever parts of the general culture they choose, from going to a show or humming a tune to talking about a new movie over dinner.

Science, though, gets portrayed as opposite to art, intuition and mystery, as though knowing in detail how that flower works somehow undermines its beauty. As a practicing physicist, I disagree. Science can enhance our appreciation of the world around us. It should be part of our general culture, accessible to all. Those “special talents” required in order to engage with and even contribute to science are present in all of us.

So how do we bring about a change? I think using the tools of the general culture to integrate science with everything else in our lives can be a big part of the solution.

(more…)

A new water-based air-conditioning system cools air to as low as 18 degrees Celsius (about 64 degrees Fahrenheit) without using energy-intensive compressors and environmentally harmful chemical refrigerants.

This technology could potentially replace the century-old air-cooling principle that is still used in modern-day air-conditioners. Suitable for both indoor and outdoor use, the new system is portable and can be customized for all types of weather conditions.

The team’s novel air-conditioning system is cost-effective to produce, and it is also more eco-friendly and sustainable.

(more…)

TransistorIncorporating organic electronic materials in the field of bioelectronics has indicated promising potential in interfacing with biological systems, including neuroscience applications. Researchers from Linköping University are taking a major step forward in that work with their development of the world’s first complementary electrochemical logic circuits that can function for long periods of time in water.

While the first printable organic electrochemical sensors appeared as early as 2002, significant advancements have developed in a few years. Organic components such as light-emitting diodes and electrochemical displays are already commercially available.

This from Linköping University:

The dominating material used until now has been PEDOT:PSS, which is a p-type material, in which the charge carriers are holes. In order to construct effective electron components, a complementary material, n-type, is required, in which the charge carriers are electrons.

(more…)

Carbon dioxideA team of researchers from the University of Toronto is looking to give wasted materials new value by developing a new catalyst that could help recycle carbon dioxide into plastic.

According to a new study, the researchers have successfully used a new technique to efficiently convert carbon dioxide to ethylene, which can then be processed to make polyethylene, the most common plastic used in making packaging, bottles, and toys.

By using a copper catalyst, the team was able to achieve the desired result of ethylene production. However, controlling the catalyst was one of the technological challenges the team had to overcome.

(more…)

ECS
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.