A new quantum material mimics a shark’s ability to detect the minute electric fields of small prey.

Such a technology might be used to study ocean organisms and ecosystems and to monitor the movement of ships for military and commercial maritime applications, says Shriram Ramanathan, professor of materials engineering at Purdue University. “So, it has potentially very broad interest in many disciplines.”

The material maintains its functional stability and does not corrode after immersion in saltwater, a prerequisite for ocean sensing. Surprisingly, it also functions well in the cold, ambient temperatures typical of seawater.

(more…)

Posted in Technology
Tagged

Carbon NanotubesThe introduction of purified carbon nanotubes appears to have a beneficial effect on the early growth of wheatgrass, according to scientists. But in the presence of contaminants, those same nanotubes could do great harm.

The Rice University lab of chemist Andrew Barron grew wheatgrass in a hydroponic garden to test the potential toxicity of nanoparticles on the plant. To their surprise, they found one type of particle dispersed in water helped the plant grow bigger and faster.

They suspect the results spring from nanotubes’ natural hydrophobic (water-avoiding) nature that in one experiment apparently facilitated the plants’ enhanced uptake of water.

The lab mounted the small-scale study with the knowledge that the industrial production of nanotubes will inevitably lead to their wider dispersal in the environment. The study cites rapid growth in the market for nanoparticles in drugs, cosmetics, fabrics, water filters, and military weapons, with thousands of tons produced annually.

Despite their widespread use, Barron says few researchers have looked at the impact of environmental nanoparticles—whether natural or human-made—on plant growth.

(more…)

By: Srikanth Saripalli, Texas A&M University

Autonomous driverless carIn early November, a self-driving shuttle and a delivery truck collided in Las Vegas. The event, in which no one was injured and no property was seriously damaged, attracted media and public attention in part because one of the vehicles was driving itself – and because that shuttle had been operating for only less than an hour before the crash.

It’s not the first collision involving a self-driving vehicle. Other crashes have involved Ubers in Arizona, a Tesla in “autopilot” mode in Florida and several others in California. But in nearly every case, it was human error, not the self-driving car, that caused the problem.

In Las Vegas, the self-driving shuttle noticed a truck up ahead was backing up, and stopped and waited for it to get out of the shuttle’s way. But the human truck driver didn’t see the shuttle, and kept backing up. As the truck got closer, the shuttle didn’t move – forward or back – so the truck grazed the shuttle’s front bumper.

As a researcher working on autonomous systems for the past decade, I find that this event raises a number of questions: Why didn’t the shuttle honk, or back up to avoid the approaching truck? Was stopping and not moving the safest procedure? If self-driving cars are to make the roads safer, the bigger question is: What should these vehicles do to reduce mishaps? In my lab, we are developing self-driving cars and shuttles. We’d like to solve the underlying safety challenge: Even when autonomous vehicles are doing everything they’re supposed to, the drivers of nearby cars and trucks are still flawed, error-prone humans.

(more…)

Researchers have captured organic nanoparticles colliding and fusing on video for the first time.

This unprecedented view of “chemistry in motion” will aid nanoscientists developing new drug delivery methods, as well as demonstrate how an emerging imaging technique opens a new window on a very tiny world.

(more…)

By: Jeremy Straub, North Dakota State University

Driverless carIn the wake of car- and truck-based attacks around the world, most recently in New York City, cities are scrambling to protect busy pedestrian areas and popular events. It’s extremely difficult to prevent vehicles from being used as weapons, but technology can help.

Right now, cities are trying to determine where and how to place statues, spike strip nets and other barriers to protect crowds. Police departments are trying to gather better advance intelligence about potential threats, and training officers to respond – while regular people are seeking advice for surviving vehicle attacks.

These solutions aren’t enough: It’s impractical to put up physical barriers everywhere, and all but impossible to prevent would-be attackers from getting a vehicle. As a researcher of technologies for self-driving vehicles, I see that potential solutions already exist, and are built into many vehicles on the road today. There are, however, ethical questions to weigh about who should control the vehicle – the driver behind the wheel or the computer system that perceives potential danger in the human’s actions.

(more…)

Nuclear energyScientists have developed an extremely efficient “molecular trap” that can be recycled and reused to capture radioactive iodides in spent nuclear reactor fuel.

The trap is like a tiny, porous super-sponge. The internal surface area of just one gram could stretch out to cover five 94-by-50-foot basketball courts, or 23,500 square feet. And, once caught inside, radioactive iodides will remain trapped for eons.

“This type of material has tremendous potential because of its high porosity,” says Jing Li, professor of chemistry and chemical biology at Rutgers University-New Brunswick. “It has far more space than a sponge and it can trap lots of stuff.”

Reprocessing means separating spent nuclear reactor fuel into materials that may be recycled for use in new nuclear fuel or discarded as waste, according to the US Nuclear Regulatory Commission. The United States has no commercial reprocessing facilities at the moment, but they are operating in other countries.

(more…)

Engineers have developed a flexible sensor “skin” that can stretch over any part of a robot’s body or prosthetic to accurately convey information about shear forces and vibration—information critical to grasping and manipulating objects.

If a robot sets out to disable a roadside bomb—or delicately handle an egg while cooking you an omelet—it needs to be able to sense when objects are slipping out of its grasp. Yet, to date, it’s been difficult or impossible for most robotic and prosthetic hands to accurately sense the vibrations and shear forces that occur, for example, when a finger is sliding along a tabletop or when an object begins to fall.

To solve that issue, the bio-inspired robot sensor skin mimics the way a human finger experiences tension and compression as it slides along a surface or distinguishes among different textures. It measures this tactile information with similar precision and sensitivity as human skin, and could vastly improve the ability of robots to perform everything from surgical and industrial procedures to cleaning a kitchen.

(more…)

PaperA new flexible, paper-based supercapacitor could power wearable electronics.

The device uses metallic nanoparticles to coat cellulose fibers in the paper, creating supercapacitor electrodes with high energy and power densities—and the best performance so far in a textile-based supercapacitor.

By implanting conductive and charge storage materials in the paper, the researchers’ layer-by-layer technique creates large surface areas that function as current collectors and nanoparticle reservoirs for the electrodes. Testing shows that devices fabricated with the technique can be folded thousands of times without affecting conductivity.

“This type of flexible energy storage device could provide unique opportunities for connectivity among wearable and internet of things devices,” says Seung Woo Lee, an assistant professor in the Woodruff School of Mechanical Engineering at the Georgia Institute of Technology. “We could support an evolution of the most advanced portable electronics. We also have an opportunity to combine this supercapacitor with energy-harvesting devices that could power biomedical sensors, consumer and military electronics, and similar applications.”

(more…)

The development of prosthetics has changed many lives, providing mobility options and allowing for more active lives. But all artificial limbs aren’t perfect. Some can be painful, difficult to use, and lead to possible skin infections. The Office of Naval Research is looking to change that, providing new options for those in need of artificial limbs.

By teaming up with the Walter Reed National Military Medical Center, the Office of Naval Research has developed a “smart” artificial leg, using sensor technology to monitor walking, alter the way the user wears the prosthetic to aid in comfortability and reduce wear and tear, and warn of potential infection risks. They’re referring to this development as Monitoring Ossolntegrated Prosthesis (MOIP).

“This new class of intelligent prostheses could potentially have a profound impact on warfighters with limb loss,” says Liming Salvino, a program officer in ONR’s Warfighter Performance Department. “MOIP not only can improve quality of life, but also usher in the next generation of prosthetic limbs.”

(more…)

Researchers have created a small, thin, biodegradable sensor that could monitor the temperature of food in transit.

Microsensors are already used in many different applications today, such as the detection of poisonous gases. They are also part of miniaturized transmitter/receiver systems, such as the ubiquitous RFID chips.

As the sensors often contain precious metals that are harmful to both the environment and human health, however, they are not suitable for medical applications involving direct contact with the human body or for inclusion in food products. There is therefore a high level of interest, both in research and industry, in developing microsensors made from non-toxic materials that are also biodegradable.

(more…)