Carbon Dioxide

Image: CC0

With atmospheric greenhouse gas levels at their highest in history, many researchers have been contemplating one question: How can we reutilize carbon dioxide?

One new study reports a new catalyst with the ability to execute highly selective conversion of carbon dioxide into ethylene, producing an important source material for the chemical industry.

The push to convert carbon dioxide into useful chemicals is not a completely novel concept among the scientific community. For this study, researchers opted to make the process more efficient by implementing a new catalyst with higher selectivity to produce more useful chemicals and less unwanted byproducts.

Ruhr-Universitӓt Bochum PhD student and ECS student member, Hemma Mistry, veered away from the traditional catalyst used in this process and instead opted for copper films treated with oxygen or hydrogen plasmas. By doing this, Mistry was able to alter surface properties for optimal performance.

(MORE: Read Mistry’s past ECS Meeting Abstract entitled, “Selectivity Control in the Electroreduction of CO2 over Nanostructured Catalysts.”)

(more…)

Reutilizing carbon dioxide to produce clean burning fuels

Carbon dioxide

David Go has always seen himself as something of a black sheep when it comes to his scientific research approach, and his recent work in developing clean alternative fuels from carbon dioxide is no exception.

In 2015, Go and his research team at the University of Notre Dame were awarded a $50,000 grant to purse innovative electrochemical research in green energy technology through the ECS Toyota Young Investigator Fellowship. With a goal of aiding scientists in advancing alternative energies, the fellowship aims to empower young researchers in creating next-generation vehicles capable of utilizing alternative fuels that can lead to climate change action in transportation.

The road less traveled

While advancing research in electric vehicles and fuel cells tend to be the top research areas in sustainable transportation, Go and his team is opting to go down the road less traveled through a new approach to green chemistry: plasma electrochemistry.

(MORE: Read Go’s Meeting Abstract on this topic, entitled “Electrochemical Reduction of CO2(aq) By Solvated Electrons at a Plasma-Liquid Interface.”)

“Our approach to electrochemistry is completely a-typical,” Go, associate professor at the University of Notre Dame, says. “We use a technique called plasma electrochemistry with the aim of processing carbon dioxide – a pollutant – back into more useful products, such as clean-burning fuels.”

(more…)

Researchers at MIT have developed wireless, wearable toxic-gas sensors made from altered nanotubes with the capacity to detect extremely small amounts of toxic gas and send alerts to your smartphone.

The goal of this technology is to be applied to safety and security devices, such as badges worn by solider to detect the presence of chemical weapons or devices for those who frequently work around hazardous materials.

“Soldiers have all this extra equipment that ends up weighing way too much and they can’t sustain it,” says Timothy Swager, lead author of the paper. “We have something that would weigh less than a credit card. And [soldiers] already have wireless technologies with them, so it’s something that can be readily integrated into a soldier’s uniform that can give them a protective capacity.”

(more…)

The technique of producing hydrogen from water has been discussed by researchers for the better part of the last 40 years, but there has yet to be a breakthrough to make these processes commercially viable.

In an effort to move towards a hydrogen-fuel economy, researchers from KTH Royal Institute of Technology are looking to begin to overcome one of the major hurdles by developing an affordable, stable way to get hydrogen from water.

The main concept behind the study is to move way from traditionally used catalysts made from expensive precious metals toward ones of common materials. The researchers believe that the new development derived from earth-abundant materials could also be used as a catalyst, possible overcoming the cost obstacle.

(more…)

Johna Leddy door plaqueECS Vice President Johna Leddy is an established researcher in electrochemical power sources and a highly respected mentor to the students of the Leddy Lab. Always the educator, Leddy’s most recent side project was creating a door plaque that explains her research to those passing by at the university (see below). The Venn diagram pictured on right is featured (click on it to expand). Leddy explains herself:

The Venn diagram is a map of my research at the current time. Energy and electrocatalysis are at the center and various things evolve from there. Largely, we focus on unusual ways to electrocatalyze reactions that are important in energy generation and storage.

The unusual means of electrocatalysis include: introduction of micromagnets on the electrode to increase rates of electron transfer; use of ultrasound in a thin layer to activate the electrode surface; and modification of electrodes with algae to make ammonia.

At the edges of the Venn diagram are places where these fundamental studies are implemented in energy technologies and voltammetric analysis. The bottom ring is a list of the tools that we use. It all ties together: theory and fundamentals to experiments to devices and back to theory. Experiments inform theory and devices, that lead to questions that generate more experiments.

leddy-plaque

In a push for more basic research funding for electrochemical science, past ECS President Daniel Scherson testified before a U.S. House subcommittee to discuss innovations in solar fuels, electricity storage, and advanced materials.

“I want them to understand where electrochemistry fits in many aspects of our lives,” Scherson, the Frank Hovorka Professor of Chemistry at Case Western Reserve University, said prior to the hearing.

During the hearing, Scherson emphasized to the subcommittee that in order to solve some of society’s most pressing problems, more federal funding to basic electrochemistry research is critical. He further explained that without efforts in electrochemistry, nearly all aspects of energy storage and conversion – including batteries, fuels cells, EVs, and wind and solar energy – would cease to be viable.

“Electrochemistry is a two century old discipline that has reemerged in recent years as a key to achieve sustainability and improve human welfare,” Scherson told the subcommittee.

In recent years, budget cuts in federal spending have adversely affected scientific research. In April of this year, Sen. Jeff Flake (R-Ariz.) launched an attack on federal research dollars in the form of the Wastebook – a report detailing specific studies that the senator believes to be wasteful spending.

(more…)

We’re delving into our archives as part of our continuing Masters Series podcasts. In 1995, ECS and the Chemical Heritage Foundation worked to compile various oral histories of some of the biggest names in electrochemical and solid state science.

One of those key figures was Norman Hackerman, a giant among giants. Hackerman was a world renowned scientist, an outstanding educator, a highly successful administrator, and a champion for basic research. Hear his voice once again as he tells colorful stories of the science, his life, and everything in between.

Listen and download these episodes and others for free through the iTunes Store, SoundCloud, or our RSS Feed. You can also find us on Stitcher.

As far back as 1839, the English scientist William Grove had the idea that the reactants of a battery could be gases fed into it from external tanks. For most of their history, fuel cells existed only as laboratory curiosities. But fuel cells have gained much more attention in recent years, with many considering these power sources for applications in vehicles and alternative grid technology.

New research from Harvard University shows just how promising fuel cell technology could be. According to the study, the researchers were able to develop more efficient fuel cells that get more robust as they age instead of degrading.

“The elegance of this process is that it happens naturally when exposed to the electrons in fuel,” says Shriram Ramananthan, lead author of the study and past ECS member. “This technique can be applied to other electrochemical devices to make it more robust. It’s like chess—before we could only play with pawns and bishops, tools that could move in limited directions. Now, we’re playing with the queen.”

With this new development, the diagnosis of fungal infections could go from days to minutes.Image: IPC PAS, Grzegorz Krzyzewski

Image: IPC PAS, Grzegorz Krzyzewski

Fungal infections can often be life-threatening, especially for those with weak immune systems. The current standard test to detect the presence of fungi in a person takes at least a dozen hours, with the results sometimes being unreliable. Now, researchers from the Polish Academy of Science have developed a new device that could allow medical practitioners to more quickly and reliably detect fungal infections, allowing for better and faster overall treatment.

The research team, led by ECS member Wlodzimierz Kutner, devised a chemical sensor that can shorten the detection of the fungi from a few days to just a few minutes.

“The most important element of our sensor is a film of polymer selectively recognizing D-arabitol,” Kutner says. “It captures molecules of D-arabitol, a compound indicating the presence of fungi. The measurement takes only a few minutes, and the D-arabitol is detected with a high degree of certainty even in the presence of interfering substances with a similar molecular structure.”

One of the most critical aspects of the treatment of fungal infections is time. The longer these infections go undetected, the more serious they become. This new development will allow for the quick, reliable detection of fungal infections and more successful administration of appropriate fungal therapy.

(more…)

The Death of Moore’s Law

The future of technology

The iconic Moore’s law has guided Silicon Valley and the technology industry at large for over 50 years. Moore’s prediction that the number of transistors on a chip would double every two years (which he first articulated at an ECS meeting in 1964) bolstered businesses and the economy, as well as took society away from the giant mainframes of the 1960s to today’s era of portable electronics.

But research has begun to plateau and keeping up with the pace of Moore’s law has proven to be extremely difficult. Now, many tech-based industries find themselves in a vulnerable position, wondering how far we can push technology.

Better materials, better chips

In an effort to continue Moore’s law and produce the next generation of electronic devices, researchers have begun looking to new materials and potentially even new designs to create smaller, cheaper, and faster chips.

“People keep saying of other semiconductors, ‘This will be the material for the next generation of devices,’” says Fan Ren, professor at the University of Florida and technical editor of the ECS Journal of Solid State Science and Technology. “However, it hasn’t really changed. Silicon is still dominating.”

Silicon has facilitated the growth predicted by Moore’s law for the past decades, but it is now becoming much more difficult to continue that path.

(more…)

ECS
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.