Topic Close-up #2
Symposium: H02—Semiconductor Wafer Bonding: Science, Technology and Applications 17
Extended abstract deadline:
April 21, 2023
Submit today!
Symposium: H02—Semiconductor Wafer Bonding: Science, Technology and Applications 17
Submit today!
ECS celebrates Krishnan (Raj) Rajeshwar, a professor, researcher, former Interface editor, and former ECS president, by honoring him, on the occasion of his 70th birthday, with a Journal of The Electrochemical Society focus issue on semiconductor electrochemistry and photoelectrochemistry.
Topics of interest include but are not limited to fundamental studies on electrochemistry, photoelectrochemistry, and semiconductor devices.
Raj has spent a great deal of his career focusing in on the understanding and application of semiconductor electrochemistry and photoelectrochemistry himself. His research also includes work in solar energy conversion, environmental chemistry, and more. It’s evident that Raj is passionate about his life’s work.
Deadline Extended: March 19, 2018
The “Semiconductor-Based Sensors for Application to Vapors, Chemicals, Biological Species, and Medical Diagnosis” focus issue of the ECS Journal of Solid State Science and Technology aims to cover various active or passive semiconductor devices for gas, chemical, bio and medical detection, with the focus on silicon, GaN, dichalcogenides/oxides, graphene, and other semiconductor materials for electronic or photonic devices.
The scope of contributed articles includes materials preparation, growth, processing, devices, chemistry, physics, theory, and applications for the semiconductor sensors. Different methodologies, principles, designs, models, fabrication techniques, and characterization are all included. Integrated systems combine semiconductor sensors, electric circuit, microfluidic channels, display, and control unit for real applications such as disease diagnostic or environmental monitoring are also welcome.
A small metallic tab that, when attached to the body, is capable of generating electricity from bending a finger and other simple movements could one day power our electronic devices.
“No one likes being tethered to a power outlet or lugging around a portable charger. The human body is an abundant source of energy. We thought: ‘Why not harness it to produce our own power?’” says Qiaoqiang Gan, associate professor of electrical engineering in the School of Engineering and Applied Sciences at the University at Buffalo and lead author of a paper describing the tab in the journal Nano Energy.
The tab is a triboelectric nanogenerator. Triboelectric charging occurs when certain materials become electrically charged after coming into contact with a different material. Most everyday static electricity is triboelectric.
Submission Deadline: February 14, 2018
The ECS Journal of Solid State Science and Technology (JSS) Focus Issue on Semiconductor-Based Sensors for Application to Vapors, Chemicals, Biological Species, and Medical Diagnosis is currently accepting manuscripts.
This JSS focus issue aims to cover various active or passive semiconductor devices for gas, chemical, bio and medical detection, with the focus on silicon, GaN, dichalcogenides/oxides, graphene, and other semiconductor materials for electronic or photonic devices. The scope of contributed articles includes materials preparation, growth, processing, devices, chemistry, physics, theory, and applications for the semiconductor sensors. Different methodologies, principles, designs, models, fabrication techniques, and characterization are all included. Integrated systems combine semiconductor sensors, electric circuit, microfluidic channels, display, and control unit for real applications such as disease diagnostic or environmental monitoring are also welcome.
Topics of interest include, but not limited, to the following:
Scientists have figured out how to make tiny individual films—each just a few atoms high—and stack them for use in new kinds of electronics.
Over the past half-century, scientists have shaved silicon films down to just a wisp of atoms in pursuit of smaller, faster electronics. For the next set of breakthroughs, though, they’ll need new ways to build even tinier and more powerful devices.
In a study that appears in Nature, researchers describe an innovative method to make stacks of thin, uniform layers of semiconductors just a few atoms thick which could expand capabilities for devices like solar cells and cell phones.
Stacking thin layers of materials offers a range of possibilities for making electronic devices with unique properties. But manufacturing them is a delicate process, with little room for error, researchers say.
“The scale of the problem we’re looking at is, imagine trying to lay down a flat sheet of plastic wrap the size of Chicago without getting any air bubbles in it,” says Jiwoong Park, a professor of chemistry at the University of Chicago and at the Institute for Molecular Engineering and the James Franck Institute. “When the material itself is just atoms thick, every little stray atom is a problem.”
The next generation of feature-filled and energy-efficient electronics will require computer chips just a few atoms thick. For all its positive attributes, trusty silicon can’t take us to these ultrathin extremes.
With two new semiconductors, however, it may be possible.
Electrical engineers have identified two semiconductors—hafnium diselenide and zirconium diselenide—that share or go beyond some of silicon’s desirable traits, starting with the fact that all three materials can “rust.”
“It’s a bit like rust, but a very desirable rust,” says Eric Pop, an associate professor of electrical engineering, who coauthored with postdoctoral scholar Michal Mleczko a paper on the research that appears in the journal Science Advances.
The new materials can also be shrunk to functional circuits just three atoms thick and they require less energy than silicon circuits. Although still experimental, the researchers say the materials could be a step toward the kinds of thinner, more energy-efficient chips demanded by devices of the future.
By: Arnab Hazari, University of Michigan
For the past four decades, the electronics industry has been driven by what is called “Moore’s Law,” which is not a law but more an axiom or observation. Effectively, it suggests that the electronic devices double in speed and capability about every two years. And indeed, every year tech companies come up with new, faster, smarter and better gadgets.
Specifically, Moore’s Law, as articulated by Intel cofounder Gordon Moore, is that “The number of transistors incorporated in a chip will approximately double every 24 months.” Transistors, tiny electrical switches, are the fundamental unit that drives all the electronic gadgets we can think of. As they get smaller, they also get faster and consume less electricity to operate.
In the technology world, one of the biggest questions of the 21st century is: How small can we make transistors? If there is a limit to how tiny they can get, we might reach a point at which we can no longer continue to make smaller, more powerful, more efficient devices. It’s an industry with more than US$200 billion in annual revenue in the U.S. alone. Might it stop growing?
At the present, companies like Intel are mass-producing transistors 14 nanometers across – just 14 times wider than DNA molecules. They’re made of silicon, the second-most abundant material on our planet. Silicon’s atomic size is about 0.2 nanometers.
Today’s transistors are about 70 silicon atoms wide, so the possibility of making them even smaller is itself shrinking. We’re getting very close to the limit of how small we can make a transistor.
Newly developed semiconductor materials are showing promising potential for the future of super-fast electronics.
A new study out of the University of Manchester details a new material called Indium Selenide (InSe). Like graphene, InSe if just a few atoms thick, but it differs from the “wonder material” in a few critical ways. While graphene has been hailed for its electronic properties, researchers state that it does not have an energy gap – making graphene behave more like a metal than a semiconductor.
Similarly, InSe can be nearly as thin as graphene while exhibiting electronic properties higher than that of silicon. Most importantly, InSe has a large energy gap, which could open the door to super-fast, next-gen electronic devices.
Businessman, author, and one of the foremost minds behind the development of the semiconductor, Andy Grove, passed away on Monday at the age of 79.
During his three decades with Intel, Grove helped transform the chip-making colossus into the world’s largest manufacturer of semiconductors. He grew with the company as it obtained more and more success, acting as Intel’s president in 1979 and becoming CEO in 1987.
“We are deeply saddened by the passing of former Intel Chairman and CEO Andy Grove,” said current Intel CEO Brian Krzanich in a news release. “Andy made the impossible happen, time and again, and inspired generations of technologists, entrepreneurs, and business leaders.”
Many considered Grove as one of the giants in the world of technology, leaving his mark on everything from memory chips to the digital revolution at large. Without Grove’s contributions to the development of the semiconductor, much of modern life would be very different. Items such as handheld electronics, LED displays, and even solar cells would not exist if not for the semiconductor.
(MORE: Learn about how semiconductors shape society.)
Here at ECS, Grove’s contributions to technology have helped shape some of our divisions and topical interest areas. In 2013, the Society established the Bruce Deal & Andy Grove Young Author Award to recognize the best paper published in the ECS Journal of Solid State Science and Technology (JSS) by a young author. The award was named in Deal, another Fairchild employee, and Grove’s honor for a seminal paper that was published in the Journal of The Electrochemical Society (JES) describing the Deal-Grove model, which is used to analyze thermal oxidation of silicon in semiconductor device fabrication and has had a lasting influence on the semiconductor technology industry.