By: Rose Hendricks, University of California, San Diego
We humans have collectively accumulated a lot of science knowledge. We’ve developed vaccines that can eradicate some of the most devastating diseases. We’ve engineered bridges and cities and the internet. We’ve created massive metal vehicles that rise tens of thousands of feet and then safely set down on the other side of the globe. And this is just the tip of the iceberg (which, by the way, we’ve discovered is melting). While this shared knowledge is impressive, it’s not distributed evenly. Not even close. There are too many important issues that science has reached a consensus on that the public has not.
Scientists and the media need to communicate more science and communicate it better. Good communication ensures that scientific progress benefits society, bolsters democracy, weakens the potency of fake news and misinformation and fulfills researchers’ responsibility to engage with the public. Such beliefs have motivated training programs, workshops and a research agenda from the National Academies of Science, Engineering, and Medicine on learning more about science communication. A resounding question remains for science communicators: What can we do better?
A common intuition is that the main goal of science communication is to present facts; once people encounter those facts, they will think and behave accordingly. The National Academies’ recent report refers to this as the “deficit model.”
But in reality, just knowing facts doesn’t necessarily guarantee that one’s opinions and behaviors will be consistent with them. For example, many people “know” that recycling is beneficial but still throw plastic bottles in the trash. Or they read an online article by a scientist about the necessity of vaccines, but leave comments expressing outrage that doctors are trying to further a pro-vaccine agenda. Convincing people that scientific evidence has merit and should guide behavior may be the greatest science communication challenge, particularly in our “post-truth” era.


The
Just one day after Volkswagen agreed to pay
A new study out of Lawrence Livermore National Laboratory shows that catalysts derived from nano-structured materials are as good as gold.

A new study led by ECS member Haluk Beyenal reveals a novel type of cooperative photosynthesis with potential applications in waste treatment and bioenergy production.
Biofuels have become a promising potential alternative for traditional fossil fuels. However, producing biofules only make sense if the greenhouse gasses emitted are less than other means of producing energy.
Static electricity is a ubiquitous part of everyday life. It’s all around us, sometimes funny and obvious, as when it makes your hair stand on end, sometimes hidden and useful, as when harnessed by the electronics in your cellphone. The dry winter months are high season for an annoying downside of static electricity – electric discharges like tiny lightning zaps whenever you touch door knobs or warm blankets fresh from the clothes dryer.