ABAF and IMLB Proceedings for ECS Transactions

With the largest digital collection of electrochemistry and solid state related proceedings, ECST has published 750+ issues and over 16,000 articles since its launch in 2005.

With the largest digital collection of electrochemistry and solid state related proceedings, ECST has published 750+ issues and over 16,000 articles since its launch in 2005.

New issues of ECS Transactions have now been published from the ABAF and IMLB meetings. These meetings are sponsored by The Electrochemical Society. Their dates, volumes, and meeting information is as follows:

Volume 63
15th International Conference on Advanced Batteries, Accumulators and Fuel Cells (ABAF 2014), Brno, Czech Republic, August 24-28, 2014

Volume 62
17th International Meeting on Lithium Batteries (IMLB 2014), Como, Italy, June 10-14, 2014

Issues are continuously updated and all full-text papers will be published here as soon as they are available.

Get currently published issues of ECST.

To be notified of newly published articles or volumes, please subscribe to the ECST RSS feed.

Glasgow_blog_imageThe ECS Conference on Electrochemical Energy Conversion & Storage with SOFC-XIV is an international conference convening in Glasgow, July 26-31, 2015, and is devoted to the following areas:

  • Section A: Solid Oxide Fuel Cells (SOFC-XIV)–All aspects of research, development, and engineering of solid oxide fuel cells
  • Section B: Batteries–A wide range of topics related to battery technologies
  • Section C: Low Temperature Fuel Cells–Low-temperature fuel cells, electrolyzers, and redox flow cells

This is the first of a series of planned biennial conferences in Europe by The Electrochemical Society on electrochemical energy conversion/storage materials, concepts, and systems, with the intent to bring together scientists and engineers to discuss both fundamental advances and engineering innovations.

This major international conference will be held at the Scottish Exhibition and Conference Centre in Glasgow and includes a full day of short courses followed by a Sunday evening welcome reception, technical presentations scheduled Monday-Friday, a dynamic technical exhibit, poster sessions, guest and award winning lecturers, and much more.

Please visit the Glasgow meeting page for the most up-to-date information regarding hotel accommodations, registration, short courses, special events and to review the online technical program.

Important Deadlines

  • Friday, February 20, 2015 – Deadline for submitting your abstracts. Submit now.
  • Take advantage of exhibition and sponsorship opportunities, submit your application by April 24, 2015.
  • Discounted hotel options will be available until June 15, 2015 or until the blocks sell out, reserve early!
  • Early-bird registration opens in March 2015, early-bird pricing will be available through June 15, 2015.

PS: Don’t forget, as a meeting attendee you are eligible for an Article Credit which allows you to publish a paper with ECS as Open Access with no further payment from either you or your institution. Find out more!

Helping Medicine with Graphene Quantum Dots

Researchers from the University of Sydney have recently published their findings that quantum dots made of graphene can improve bio-imaging and LEDs.

The study was published in the journal Nanoscale, where the scientists detailed how activating graphene quantum dots produced a dot that would shine nearly five times bright than the conventional equivalent.

Essentially, the dots are nano-sized semiconductors, which are fluorescent due to their surface properties. However, this study introduces the utilization of graphene in the quantum dot, which produces an extra-bright dot that has the potential to help medicine.

(more…)

Member Spotlight – Vilas Pol

Vilas Pol has assisting in discovering a nanoparticle network that could bright fast-charging batteries. He joined the Society in 2012.Credit: Argonne National Laboratory

Vilas Pol has assisted in the discovery of a nanoparticle network that could bring fast-charging batteries. He joined the Society in 2012.
Credit: Argonne National Laboratory

The Electrochemical Society’s Vilas Pol, along with a team of Purdue University researchers, has developed a nanoparticle network that could produce very fast-charging batteries.

This new electrode design for lithium-ion batteries has been shown to potentially reduce the charging time from hours to minutes, all by replacing the conventional graphite electrode with a network of tin-oxide nanoparticles.

This from Purdue University:

The researchers have performed experiments with a “porous interconnected” tin-oxide based anode, which has nearly twice the theoretical charging capacity of graphite. The researchers demonstrated that the experimental anode can be charged in 30 minutes and still have a capacity of 430 milliamp hours per gram (mAh g−1), which is greater than the theoretical maximum capacity for graphite when charged slowly over 10 hours.

(more…)

7 New Job Postings in Electrochemistry

Find openings in your area via the ECS job board.

Find openings in your area via the ECS job board.

ECS’s job board keeps you up-to-date with the latest career opportunities in electrochemical and solid-state science. Check out the latest openings that have been added to the board:

Postdoctoral Research Associate in Chemical Engineering
Case Western Reserve University – Cleveland, Ohio
The Postdoctoral Research Associate will conduct research and development on titanium electrowinning from molten salts. Technical responsibilities will include high-temperature electrochemical reactor design and fabrication, experimental investigations of electrodeposition from molten salts, and some mathematical modeling studies.

(more…)

New Coating to Make Batteries Safer

At left, a typical button battery; at right, a button battery coated with quantum tunneling composite (QTC).Credit: Bryan Laulicht/MIT

At left, a typical button battery; at right, a button battery coated with quantum tunneling composite (QTC).
Credit: Bryan Laulicht/MIT

We’ve heard a lot about innovation and improvements in the field of battery recently, but safety seems to have been put on the back-burner in lieu of creating a more powerful battery. This issue has now been addressed through funding from the National Institutes of Health in order to make technological breakthroughs in safety innovations for batteries.

According to the National Capital Poison Center, more than 3,500 people of all ages swallow button batteries every year in the United States. In order to combat the permanent injury that this could cause, researchers from MIT, Brigham and Women’s Hospital, and Massachusetts General Hospital have come together to create a coating that prevents batteries from conducing electricity after being swallowed – thereby causing no damage to the gastrointestinal tract.

Prior to this innovation, once a battery was swallowed, it would start to interact with the saliva and create an electric current. This current produces hydroxide, which causes damages to tissue. If not treated, this can cause serious injury within a few hours.

(more…)

The ECS Journal of Solid State Science and Technology (JSS) is one of the newest peer-reviewed journals from ECS launched in 2012.

The ECS Journal of Solid State Science and Technology (JSS) is one of the newest peer-reviewed journals from ECS launched in 2012.

Printing technologies in an atmospheric environment offer the potential for low-cost and materials-efficient alternatives for manufacturing electronics and energy devices such as luminescent displays, thin film transistors, sensors, thin film photovoltaics, fuel cells, capacitors, and batteries.

This focus issue will cover state-of-the-art efforts that address a variety of approaches to printable functional materials and devices.

Topics of interest include but are not limited to:

  • Printable functional materials: metals; organic conductors; organic and inorganic semiconductors; and more
  • Functional printed devices: RFID tags and antenna; thin film transistors; solar cells; and more
  • Advances in printing and conversion processes: ink chemistry; ink rheology; printing and drying process; and more
  • Advances in conventional and emerging printing techniques: inkjet printing; aerosol printing; flexographic printing; and more

Find out more!

Deadline for submission of manuscripts is November 30, 2014.

Please submit manuscripts here.

Glasgow Conferecne

The ECS Conference on Electrochemical Energy Conversion & Storage with SOFC–XIV

The ECS Conference on Electrochemical Energy Conversion & Storage with SOFC–XIV is an international conference convening in Glasgow, Scotland, July 26-31, 2015. It is devoted to all aspects of research, development, and engineering of solid oxide fuel cells, batteries, and low-temperature fuel cells, electrolyzers, and redox flow cells.

This international conference will bring together scientists and engineers to discuss both fundamental advances and engineering innovations.

See the Call for Papers for detailed information about the symposia, manuscript submission requirements, and financial assistance.

Submit your abstract here.

Be a sponsor or exhibitor.

Researcher used microscopy to take an atomic-level look at a cubic garnet material called LLZO that could help enable higher-energy battery designs.Credit: Oak Ridge National Laboratory

Researcher used microscopy to take an atomic-level look at a cubic garnet material called LLZO that could help enable higher-energy battery designs.
Credit: Oak Ridge National Laboratory

The quest for better batteries is an ongoing trend, and now the researchers from the Department of Energy’s Oak Ridge National Laboratory (ORNL) have yet another development to add.

During their research, the scientists found exceptional properties in a garnet material. They now believe that this could lead to the development of higher-energy battery designs.

This from ORNL:

The ORNL-led team used scanning transmission electron microscopy to take an atomic-level look at a cubic garnet material called LLZO. The researchers found the material to be highly stable in a range of aqueous environments, making the compound a promising component in new battery configurations.

Read the full article here.

While most researcher tend to use a pure lithium anode to improve a battery’s energy density, the ORNL scientists believe the LLZO would be an ideal separator material.

“Many novel batteries adopt these two features [lithium anode and aqueous electrolyte], but if you integrate both into a single battery, a problem arises because the water is very reactive when in direct contact with lithium metal,” said ORNL postdoctoral associate Cheng Ma, first author on the team’s study published in Angewandte Chemie. “The reaction is very violent, which is why you need a protective layer around the lithium.”

With developments such as these, which lead to higher-energy batteries – we begin to improve electrified transportation and electric grid energy storage applications. Due to the importance of higher-energy batteries, researchers tend to explore battery designs beyond the limits of lithium-ion technologies.

Read the full study here.

To find out more about battery and how it will revolutionize the future, check out what the ECS Battery Division is doing. Also, head over to the Digital Library to read the latest research (some is even open access!). While you’re there, don’t forget to sign up for e-Alerts so you can keep up-to-date with the fast-paced world of electrochemical and solid-state science.

Researchers at Nanyang Technological University have developed ultra-fast charging batteries that last 20 years.Credit: Nanyang Technological University

Researchers at Nanyang Technological University have developed ultra-fast charging batteries that last 20 years.
Credit: Nanyang Technological University

If you’re tired of spending more time charging your phone than actually using it, a team of researchers out of Singapore have some good news for you. The group from Nanyang Technological University (NTU) have developed an ultra-fast charging battery – so fast that it can be recharged up to 70 percent in only two minutes.

When comparing this new discovery to the already existing lithium-ion batteries, the new generation has a lifespan of over 20 years – approximately 10 times more than the current lithium-ion battery. Further, each of the existing li-ion’s cycles takes two to four hours to charge, which is significantly more than the new generation’s two minute charge time.

The development will be of particular benefit to the industry of electric vehicles, where people are often put off by the long recharge times and limited battery life. The researchers at NTU believe that drivers of electric vehicles could save tens of thousands on battery replacement costs and will be able to charge their cars in just ten minutes, all in thanks to the new ultra-fast charging battery.

This from NTU:

In the new NTU-developed battery, the traditional graphite used for the anode (negative pole) in lithium-ion batteries is replaced with a new gel material made from titanium dioxide. Titanium dioxide is an abundant, cheap and safe material found in soil. It is commonly used as a food additive or in sunscreen lotions to absorb harmful ultraviolet rays. Naturally found in spherical shape, the NTU team has found a way to transform the titanium dioxide into tiny nanotubes, which is a thousand times thinner than the diameter of a human hair. This speeds up the chemical reactions taking place in the new battery, allowing for super-fast charging.

Read the full article here.

If you’re interested in battery research, take a look at what our Battery Division has to offer.

You can also explore the vast amount of research ECS carries on the technological and scientific breakthroughs in the field of battery by browsing through our digital library or taking a look at this past issue of Interface.