The dolphin 'breathalyzer' will analyze the for health problems and aid in wildlife conservation.Credit: American Chemical Society

The dolphin ‘breathalyzer’ will analyze the for health problems and aid in wildlife conservation.
Credit: American Chemical Society

While breath analysis is most commonly known for its ability to detect alcohol consumption, it has the potential to extend far beyond that use. Breath analysis has the ability to diagnose a wide range of human conditions, and is now being utilized to aid the bottlenose dolphin.

Engineers from the University of California, Davis have developed a device for collecting dolphin breath for analysis. Because invasive techniques such as skin biopsies and blood sampling are difficult to perform on wild dolphins, this device will make it easier to check the health of the marine animals, study their biology, and aid in wildlife conservation.

This from UC Davis:

The researchers designed an insulated tube that traps breath exhaled from a dolphin’s blowhole and freezes it. They analyzed samples to create profiles of the mix of metabolites in breath, established baseline profiles of healthy animals and were able to identify changes in the breath of animals affected by disease or other factors. The researchers concluded that breath analysis could be used to diagnose and monitor problems in marine mammals – and, by extension, in ocean health as well.

(more…)

Scientists from Tohoku University in Japan have developed a new type of energy-efficient flat light source based on carbon nanotubes with very low power consumptions of around 0.1 Watt for every hour's operation -- about a hundred times lower than that of an LED.Credit: N. Shimoi/Tohoku University

Scientists have developed a new type of energy-efficient flat light source with a power consumption about a hundred times lower than that of an LED.
Credit: N. Shimoi/Tohoku University

Scientists all around the globe are constantly looking for a way to create the even-better-bulb of tomorrow. In order to do this, researchers are looking toward carbon electronics.

This from the American Institute of Physics:

Electronics based on carbon, especially carbon nanotubes (CNTs), are emerging as successors to silicon for making semiconductor materials, and they may enable a new generation of brighter, low-power, low-cost lighting devices that could challenge the dominance of light-emitting diodes (LEDs) in the future and help meet society’s ever-escalating demand for greener bulbs.

Read the full article here.

With this in mind, scientists from Tohoku University have developed a new type of energy-efficient flat light source with a very low power consumption that comes in around 0.1 Watt for every hour of operation. This is about one hundred times lower than that of an LED.

(more…)

UW Reactor Could Make Fusion a Reality

The reactor uses a tokamak design, which is a giant torus surrounded on the sides and in the core by superconducting magnets generating tremendous energy.Credit: University of Washington

The reactor uses a tokamak design, which is a giant torus surrounded on the sides and in the core by superconducting magnets generating tremendous energy.
Credit: University of Washington

Fusion energy appears to be the future of energy storage – or at least it should be. Fusion energy yields zero greenhouse gas emissions, no long-lived radioactive waste, and a nearly unlimited fuel supply.

Up until this point, there has been an economic roadblock in producing this type of energy. The designs that have been penciled out to create fusion power are too expensive and won’t feasibly outperform systems that use fossil fuels.

Now, the engineers at the University of Washington (UW) are hoping to change that. They have designed a concept for a fusion reactor, that when scaled up, would rival costs of fossil fuel plants with similar electrical outputs.

This from the University of Washington:

The design builds on existing technology and creates a magnetic field within a closed space to hold plasma in place long enough for fusion to occur, allowing the hot plasma to react and burn. The reactor itself would be largely self-sustaining, meaning it would continuously heat the plasma to maintain thermonuclear conditions. Heat generated from the reactor would heat up a coolant that is used to spin a turbine and generate electricity, similar to how a typical power reactor works.

Read the full article here.

Currently, the University of Washington’s concept is about one-tenth the size and power output of a final product, which would still be years away.

Does the future of energy interest you? Check out what our Energy Technology Division has to offer. And head over to our Digital Library to see what our scientists are researching in the field of energy storage and conversion.

Researchers at Nanyang Technological University have developed ultra-fast charging batteries that last 20 years.Credit: Nanyang Technological University

Researchers at Nanyang Technological University have developed ultra-fast charging batteries that last 20 years.
Credit: Nanyang Technological University

If you’re tired of spending more time charging your phone than actually using it, a team of researchers out of Singapore have some good news for you. The group from Nanyang Technological University (NTU) have developed an ultra-fast charging battery – so fast that it can be recharged up to 70 percent in only two minutes.

When comparing this new discovery to the already existing lithium-ion batteries, the new generation has a lifespan of over 20 years – approximately 10 times more than the current lithium-ion battery. Further, each of the existing li-ion’s cycles takes two to four hours to charge, which is significantly more than the new generation’s two minute charge time.

The development will be of particular benefit to the industry of electric vehicles, where people are often put off by the long recharge times and limited battery life. The researchers at NTU believe that drivers of electric vehicles could save tens of thousands on battery replacement costs and will be able to charge their cars in just ten minutes, all in thanks to the new ultra-fast charging battery.

This from NTU:

In the new NTU-developed battery, the traditional graphite used for the anode (negative pole) in lithium-ion batteries is replaced with a new gel material made from titanium dioxide. Titanium dioxide is an abundant, cheap and safe material found in soil. It is commonly used as a food additive or in sunscreen lotions to absorb harmful ultraviolet rays. Naturally found in spherical shape, the NTU team has found a way to transform the titanium dioxide into tiny nanotubes, which is a thousand times thinner than the diameter of a human hair. This speeds up the chemical reactions taking place in the new battery, allowing for super-fast charging.

Read the full article here.

If you’re interested in battery research, take a look at what our Battery Division has to offer.

You can also explore the vast amount of research ECS carries on the technological and scientific breakthroughs in the field of battery by browsing through our digital library or taking a look at this past issue of Interface.

Self-Driving Cars by next Year?

With new technology and scientific breakthroughs in the automobile industry, everyone is waiting for the first car that will be able to run autonomously. Now, it may be closer than we expected.

Tesla Motors’ CEO and chief product architect, Elon Musk, made a prediction in September of 2013 stating that Tesla automobiles would operate autonomously for “90 percent of miles driven within three years.” Musk has now revised his statement and has proponents of autopilot capable cars hopeful for the future.

This from IEEE Spectrum:

One year later, he’s revised his estimate a bit, now saying that “a Tesla car next year will probably be 90 percent capable of autopilot. Like, so 90 percent of your miles can be on auto. For sure highway travel.” Although he didn’t go into any detail (besides some suggestion of an obligatory sensor fusion approach), Musk seems confident that this is something that Tesla will make happen, not just sometime soon, but actually next year.

Read the full article here.

While there is still much ambiguity on what Musk’s statement actually entails, we will be waiting to see what technology Tesla puts forward within the next year.

Want to find out more about the future of the automobile? Take a look at what our scientist are researching via our Digital Library.

New Prosthetic Hand Recreates Sense of Touch

The prosthetic arm plugs into the patient’s electrode implant to create natural-feeling sensations.
Credit: Russell Lee

Prosthetic limbs help amputees with mobility and functionality, but do not allow one to regain their sense of touch. Scientists and engineers have been attempting to re-create touch for those who have lost limbs for some time now, and they may have found the answer.

A study published in Science Translation Medicine states that long-lasting, natural-feeling sensations are now able to be produced artificially for those with prosthetic limbs. Of course, those using the device cannot physically feel the ball. Although, the patterns of electric singles that are sent by a computer into nerves around the patient’s arm will tell him or her differently.

(more…)

US Army LogoThe DOD FY 2015 Defense University Research Instrumentation Program (DURIP) BAA has been published. 

Proposals are due 17 Nov 4:00pm ET. 

This announcement seeks proposals to purchase instrumentation in support of
research in areas of interest to the DoD, including areas of research supported by the Army Research Office (ARO), the Office of Naval Research
(ONR), and the Air Force Office of Scientific Research (AFOSR).

It’s recommended that potential proposers contact the appropriate program
manager prior to submitting their proposal

Find out more

Thanks to ECS board member Dr. Robert Mantz from the Army Research Office for the heads up.

3 New Job Postings in Electrochemistry

Find openings in your area via the ECS job board.

Find openings in your area via the ECS job board.

ECS’s job board keeps you up-to-date with the latest career opportunities in electrochemical and solid-state science. Check out the latest openings that have been added to the board:

Sr. Process Engineer
TriStaff Group – San Diego, California
As our Sr. Process Engineer, you will be responsible for the process development for advanced capacitive energy storage devices. This is a hands-on role, spending a significant amount of time in the lab doing work aimed at developing lab scale and pilot line processes for advanced electrodes and energy storage devices

Faculty Positions
Soochow University – Suzhou, China
Ten full professor or principal investigator (PI) and 20 associate professor positions are available at Institute of Energy of Soochow University. The Institute of Energy focuses on researches in areas related to science and technology of new energy.

Postdoctoral Research Associate
Brookhaven National Laboratory – Upton, New York
Essential duties and responsibilities include: development of lithium rechargeable cell technologies utilizing Sulfur based cathode materials, conduct basic research on multiple battery materials and electrochemical systems by utilizing various material and electrochemical characterization techniques, plan and execute research experiments in electrchemical call systems via material processing, study cell level component interactions, achieve mechanistic understanding and identify degradation mechanisms, and implement and create methods of diagnostic testing for battery characterization.

2014 ECS/SMEQ Meeting in the Books

Edison Theatre

“Pee to Energy” demo at the Edison Theatre in the exhibit hall in Cancun, Mexico. Rob Gerth, Gerri Botte, and Madhi Muthuvel getting ready to go.

I’m working on an official review of what happened at the meeting. In the meantime, I’ve been looking at some of the photos which got me thinking about the adventure that is an ECS meeting.

A couple of quick hits first:

(more…)

Gates Partnership funding review panel

Pictured is the funding review panel for the 2014 Electrochemical Energy and Water Summit grant proposals: Gerardo Arriaga, Centro de Investigación y Desarrollo Tecnologico en Electroquimica; Kathy Ayers, Proton OnSite; Ioannis Ieropoulos, University of the West of England – Bristol; Paul Kohl, Georgia Tech, President of ECS; Barry MacDougall, National Research Council of Canada, Past President of ECS; Paul Natishan, Naval Research Laboratory, Past President of ECS; Brian Stoner, RTI International; E. Jennings Taylor, Faraday Technology Inc. and Treasurer of ECS. Non-voting observers pictured: Dan Fatton, ECS Director of Development, Roque Calvo, ECS Executive Director, Carl Hensman, Bill & Melinda Gates Foundation.

The winners of the 2014 Electrochemical Energy and Water Summit funding challenge have been selected and notified. Once we get the signed agreements from each of their institutions, we will formally announce the results.

It was an incredible experience all around. Thank you to everyone who participated.

By the numbers:

  • 2,200+ attendees
  • 120 participants in the facilitated brainstorm
  • 47 proposals received
  • 30 applicants invited to present
  • 4 projects selected
  • $210,000 in funding and the projects will be announced soon!

See what else happened at the meeting.