Turning Hydrogen Into “Graphene”

A comparison of the basic ring structure of the carbon compound graphene with that of a similar hydrogen-based structure synthesized by Carnegie scientists.Credit: Carnegie Science

A comparison of the basic ring structure of the carbon compound graphene with that of a similar hydrogen-based structure synthesized by Carnegie scientists.
Credit: Carnegie Science

A new study shows remarkable parallels between hydrogen and graphene under extreme pressures.

The study was conducted by Carnegie’s Ivan Naumov and Russell Hemley, and can be found in the December issue of Accounts of Chemical Research.

Because of hydrogen’s simplicity and abundance, it has long been used as a testing ground for theories of the chemical bond. It is necessary to understand chemical bonding in extreme environments in order to expand our knowledge of a broad range of conditions found in the universe.

It has always been difficult for researchers to observe hydrogen’s behavior under very high pressure, until recently when teams observed the element at pressures of 2-to-3.5 million times the normal atmospheric pressure.

Under this pressure, it transforms into an unexpected structure that consists of layered sheets, rather than close-packed metal – which had been the prediction of scientists many years ago.

(more…)

Helping Medicine with Graphene Quantum Dots

Researchers from the University of Sydney have recently published their findings that quantum dots made of graphene can improve bio-imaging and LEDs.

The study was published in the journal Nanoscale, where the scientists detailed how activating graphene quantum dots produced a dot that would shine nearly five times bright than the conventional equivalent.

Essentially, the dots are nano-sized semiconductors, which are fluorescent due to their surface properties. However, this study introduces the utilization of graphene in the quantum dot, which produces an extra-bright dot that has the potential to help medicine.

(more…)

New Coating to Make Batteries Safer

At left, a typical button battery; at right, a button battery coated with quantum tunneling composite (QTC).Credit: Bryan Laulicht/MIT

At left, a typical button battery; at right, a button battery coated with quantum tunneling composite (QTC).
Credit: Bryan Laulicht/MIT

We’ve heard a lot about innovation and improvements in the field of battery recently, but safety seems to have been put on the back-burner in lieu of creating a more powerful battery. This issue has now been addressed through funding from the National Institutes of Health in order to make technological breakthroughs in safety innovations for batteries.

According to the National Capital Poison Center, more than 3,500 people of all ages swallow button batteries every year in the United States. In order to combat the permanent injury that this could cause, researchers from MIT, Brigham and Women’s Hospital, and Massachusetts General Hospital have come together to create a coating that prevents batteries from conducing electricity after being swallowed – thereby causing no damage to the gastrointestinal tract.

Prior to this innovation, once a battery was swallowed, it would start to interact with the saliva and create an electric current. This current produces hydroxide, which causes damages to tissue. If not treated, this can cause serious injury within a few hours.

(more…)

Norwegian entrepreneur, Jostein Eikeland, is finally unveiling the development his has been working on in secret for the past decade in hopes to jolt the world of energy storage.

Eikeland and his company Alevo plan to reveal a battery that will last longer and cost far less than the current rival technologies. To do this, they have developed a technology that is to store excess electricity generated by power plants.

This from Reuters:

The company has created what it calls GridBanks, which are shipping containers full of thousands of battery cells. Each container can deliver 2 megawatts of power, enough to power up to 1,300 homes for an hour. The batteries use lithium iron phosphate and graphite as active materials and an inorganic electrolyte – what Eikeland called the company’s “secret sauce” – that extends longevity and reduces the risk of burning. They can be charged and discharged over 40,000 times, the company said.

(more…)

Glasgow Conferecne

The ECS Conference on Electrochemical Energy Conversion & Storage with SOFC–XIV

The ECS Conference on Electrochemical Energy Conversion & Storage with SOFC–XIV is an international conference convening in Glasgow, Scotland, July 26-31, 2015. It is devoted to all aspects of research, development, and engineering of solid oxide fuel cells, batteries, and low-temperature fuel cells, electrolyzers, and redox flow cells.

This international conference will bring together scientists and engineers to discuss both fundamental advances and engineering innovations.

See the Call for Papers for detailed information about the symposia, manuscript submission requirements, and financial assistance.

Submit your abstract here.

Be a sponsor or exhibitor.

Researcher used microscopy to take an atomic-level look at a cubic garnet material called LLZO that could help enable higher-energy battery designs.Credit: Oak Ridge National Laboratory

Researcher used microscopy to take an atomic-level look at a cubic garnet material called LLZO that could help enable higher-energy battery designs.
Credit: Oak Ridge National Laboratory

The quest for better batteries is an ongoing trend, and now the researchers from the Department of Energy’s Oak Ridge National Laboratory (ORNL) have yet another development to add.

During their research, the scientists found exceptional properties in a garnet material. They now believe that this could lead to the development of higher-energy battery designs.

This from ORNL:

The ORNL-led team used scanning transmission electron microscopy to take an atomic-level look at a cubic garnet material called LLZO. The researchers found the material to be highly stable in a range of aqueous environments, making the compound a promising component in new battery configurations.

Read the full article here.

While most researcher tend to use a pure lithium anode to improve a battery’s energy density, the ORNL scientists believe the LLZO would be an ideal separator material.

“Many novel batteries adopt these two features [lithium anode and aqueous electrolyte], but if you integrate both into a single battery, a problem arises because the water is very reactive when in direct contact with lithium metal,” said ORNL postdoctoral associate Cheng Ma, first author on the team’s study published in Angewandte Chemie. “The reaction is very violent, which is why you need a protective layer around the lithium.”

With developments such as these, which lead to higher-energy batteries – we begin to improve electrified transportation and electric grid energy storage applications. Due to the importance of higher-energy batteries, researchers tend to explore battery designs beyond the limits of lithium-ion technologies.

Read the full study here.

To find out more about battery and how it will revolutionize the future, check out what the ECS Battery Division is doing. Also, head over to the Digital Library to read the latest research (some is even open access!). While you’re there, don’t forget to sign up for e-Alerts so you can keep up-to-date with the fast-paced world of electrochemical and solid-state science.

Researchers at Nanyang Technological University have developed ultra-fast charging batteries that last 20 years.Credit: Nanyang Technological University

Researchers at Nanyang Technological University have developed ultra-fast charging batteries that last 20 years.
Credit: Nanyang Technological University

If you’re tired of spending more time charging your phone than actually using it, a team of researchers out of Singapore have some good news for you. The group from Nanyang Technological University (NTU) have developed an ultra-fast charging battery – so fast that it can be recharged up to 70 percent in only two minutes.

When comparing this new discovery to the already existing lithium-ion batteries, the new generation has a lifespan of over 20 years – approximately 10 times more than the current lithium-ion battery. Further, each of the existing li-ion’s cycles takes two to four hours to charge, which is significantly more than the new generation’s two minute charge time.

The development will be of particular benefit to the industry of electric vehicles, where people are often put off by the long recharge times and limited battery life. The researchers at NTU believe that drivers of electric vehicles could save tens of thousands on battery replacement costs and will be able to charge their cars in just ten minutes, all in thanks to the new ultra-fast charging battery.

This from NTU:

In the new NTU-developed battery, the traditional graphite used for the anode (negative pole) in lithium-ion batteries is replaced with a new gel material made from titanium dioxide. Titanium dioxide is an abundant, cheap and safe material found in soil. It is commonly used as a food additive or in sunscreen lotions to absorb harmful ultraviolet rays. Naturally found in spherical shape, the NTU team has found a way to transform the titanium dioxide into tiny nanotubes, which is a thousand times thinner than the diameter of a human hair. This speeds up the chemical reactions taking place in the new battery, allowing for super-fast charging.

Read the full article here.

If you’re interested in battery research, take a look at what our Battery Division has to offer.

You can also explore the vast amount of research ECS carries on the technological and scientific breakthroughs in the field of battery by browsing through our digital library or taking a look at this past issue of Interface.

The new solar battery stores power by "breathing" air to decompose and re-form lithium peroxide.Credit: Yiying Wu/Ohio State University

The new solar battery stores power by “breathing” air to decompose and re-form lithium peroxide.
Credit: Yiying Wu/Ohio State University

Is it a solar cell? Is it a rechargeable battery? Well, technically it’s both.

The scientists at Ohio State University have developed the world’s first solar battery that can recharge itself using light and air. The findings from the patent-pending device were published in the October 3, 2014 issue of the journal Nature Communications.

This from Ohio State University:

Key to the innovation is a mesh solar panel, which allows air to enter the battery, and a special process for transferring electrons between the solar panel and the battery electrode. Inside the device, light and oxygen enable different parts of the chemical reactions that charge the battery.

Read the full article here.

The university plans to license the solar battery to industry.

“The state of the art is to use a solar panel to capture the light, and then use a cheap battery to store the energy,” said Yiying Wu, professor of chemistry and biochemistry at Ohio State University. “We’ve integrated both functions into one device. Any time you can do that, you reduce cost.”

The device also tackles the issue of solar energy efficiency by eliminating the loss of electricity that normally occurs when electrons have to travel between a solar cell and an external battery. Where typically only 80 percent of electrons make it from the solar cell into the battery, the new solar battery saves nearly 100 percent of electrons.

Want to know more about what’s going on with solar batteries? Check out the latest research in ECS’s Digital Library and find out what our scientists think the future looks like.

The researchers at Virginia Tech have successfully demonstrated the concept of a sugar biobattery that can completely convert the chemical energy in sugar substrates into electricity. Credit: Virginia Tech University

The researchers at Virginia Tech have successfully demonstrated the concept of a sugar biobattery that can completely convert the chemical energy in sugar substrates into electricity.
Credit: Virginia Tech University

According to new studies, the future of energy storage and conversion may be something that’s sitting in your kitchen cupboard.

A new breakthrough out of Virginia Tech demonstrates that a sugar-powered biobattery has the potential to outperform the current lithium-ion batteries on many fronts.

Not only is the energy density of the sugar-powered battery significantly higher than that of the lithium-ion battery, but the sugar battery is also less costly than the li-ion, refillable, environmentally friendly, and nonflammable.

This from LiveScience:

This nature-inspired biobattery is a type of enzymatic fuel cell (EFC) — an electrobiochemical device that converts chemical energy from fuels such as starch and glycogen into electricity. While EFCs operate under the same general principles as traditional fuel cells, they use enzymes instead of noble-metal catalysts to oxidize their fuel. Enzymes allow for the use of more-complex fuels (such as glucose), and these more-complex fuels are what give EFCs their superior energy density.

Read the full article here.

The scientists hope to increase the power density, extend the lifetime, and reduce the cost of electrode materials in order for this energy-dense sugar biobattery to become the technology of the future.

Find the full findings in this issue of Nature Communications.

Learn more about this topic by reading a recently published open access article via ECS’s Digital Library.

Lithium or Magnesium?

LinkedIn chat bubbles

Join the ECS LinkedIn group.

This from our LinkedIn group:

Recently some researchers move to Mg batteries. Pellion Tech in its white paper claims double energy density both in volumetric and gravimetric for Mg batteries.

I am confused since it seems that the discharge voltage should be at least 3V and no cell have been reported working experimentally at such potential yet (Maybe I did not find).

Moreover, the safety issues will not come for Mg batteries with magnesium anodes? and for Mg-ion batteries, the energy density would be competitive with current Li-ion batteries?

Does the main opportunity for Mg batteries lie in their cathodes same as Lithium batteries?

Leave comments here.

Request to join the LinkedIn group today!