ABAF and IMLB Proceedings for ECS Transactions

With the largest digital collection of electrochemistry and solid state related proceedings, ECST has published 750+ issues and over 16,000 articles since its launch in 2005.

With the largest digital collection of electrochemistry and solid state related proceedings, ECST has published 750+ issues and over 16,000 articles since its launch in 2005.

New issues of ECS Transactions have now been published from the ABAF and IMLB meetings. These meetings are sponsored by The Electrochemical Society. Their dates, volumes, and meeting information is as follows:

Volume 63
15th International Conference on Advanced Batteries, Accumulators and Fuel Cells (ABAF 2014), Brno, Czech Republic, August 24-28, 2014

Volume 62
17th International Meeting on Lithium Batteries (IMLB 2014), Como, Italy, June 10-14, 2014

Issues are continuously updated and all full-text papers will be published here as soon as they are available.

Get currently published issues of ECST.

To be notified of newly published articles or volumes, please subscribe to the ECST RSS feed.

Help ECS Support Young Scientists

2014highlightsImagine a world where anyone—from the student in Atlanta to the researcher in Port au Prince—can freely read the scientific papers they need to make a discovery, where scientific breakthroughs in energy conversion, sensors or nanotechnology are unimpeded by fees to access or publish research.

At ECS, that is our vision of the future. We’re working to provide open access to all ECS publications, while maintaining our high standards of peer-review and fast delivery of content.

Please help us make this vision a reality by
making a tax-deductible donation to ECS today.

Your donation fosters the growth of electrochemistry and solid state science and technology by supporting ECS publications and the participation of scientists from around the world at our biannual meetings.

Through travel grants and reduced fees, ECS enables the participation of young scientists and students who otherwise might not be able to attend an ECS meeting. This is particularly important as the work of these scientists, and all ECS members, increasingly holds the keys to solving global challenges in energy, waste and sustainability.

Please help us continue the important work of ECS by donating today.

Thank you again for your incredible work and continued support.

Celebrate Giving Tuesday with ECS

givingtuesday2Today, families, businesses, charities and communities around the world are joining together to celebrate generosity and to give support through #GivingTuesday.

Join ECS and organizations around the world in celebrating #GivingTuesday
by making a donation today.

Support young scientists
Your generosity helps ECS support students and young scientists through:

With your help, ECS will remain committed to fostering the growth and development of electrochemistry and solid state science among the next generation of researchers, scientists and engineers.

Support the science of sustainability
From inventing renewable energy technologies to disposing of toxic wastes and keeping our water clean, the scientists that support ECS hold the keys to solving global challenges in energy, waste and water. Your Giving Tuesday gift will help ECS continue a legacy of scientific recognition, innovation and education.

Please be part of a new global tradition of generosity.
DONATE NOW!

Your donations make it possible for ECS to support students and scientists in the field of electrochemical and solid state science and technology. Thank you for your generosity!

Graphene Applied to Body Armor

The ballistic test shows that graphene is excellent at both absorbing and spreading the energy of an impact.Credit: Jae-Hwang Lee

The ballistic test shows that graphene is excellent at both absorbing and spreading the energy of an impact.
Credit: Jae-Hwang Lee

We’ve been talking a lot about graphene – from its potential in energy storage to its ability to improve and revolutionize personal electronic devices, this material seems to be everywhere. Now, engineers out of the University of Massachusetts believe it could help save lives.

Engineers developed a mock-up of multilayered graphene body armor and tested it in a miniature shooting range. The results suggest that graphene may be able to absorb 10 times the amount of energy that its steel competitor can before failing.

(more…)

Van Gogh under the Microscope

By examining paint segments from Van Gough's "Sunflowers," experts believe preservation techniques could be improved.Credit: Van Gogh Gallery

By examining paint segments from Van Gogh’s “Sunflowers,” experts believe preservation techniques could be improved.
Credit: Van Gogh Gallery

Electrochemical and solid state science transcend the limits of academic science to touch many of the things we come into contact with on a day-to-day basis, whether we know it or not. Most recently we’ve gotten a first-hand account of this at our Electrochemical Energy and Water Summit, where some of the brightest minds in electrochemical and solid state science came together to solve critical issues in global sanitation. Now, these sciences are even assisting in the preservation of culture.

Pin-sized painting samples from Vincent van Gogh’s “Sunflowers” painting have been extracted from the Van Gogh Museum and are now under the microscope at The University of Queensland’s Centre for Microscopy and Microanalysis (CMM).

UQ’s Professor John Drennan is leading the project, which aims to understand the aging characteristics of significant artworks in order to improve conservation techniques.

(more…)

The ECS Journal of Solid State Science and Technology (JSS) is one of the newest peer-reviewed journals from ECS launched in 2012.

The ECS Journal of Solid State Science and Technology (JSS) is one of the newest peer-reviewed journals from ECS launched in 2012.

Atomic Layer Etch (ALEt) and Atomic Layer Clean (ALC) are emerging as enabling technologies for sub 10nm technology nodes. At these scales performance will be extremely sensitive to process variation.

Atomic layer processes are the most promising path to deliver the precision needed. However, many areas of ALEt and ALC are in need of improved fundamental understanding and process development. This focus issue will cover state-of-the-art efforts that address a variety of approaches to ALEt and ALC.

Topics of interest include but are not limited to:

  • Surface reaction chemistry and its impact on selectivity
  • Plasma ion energy distribution and control methods
  • Novel plasma sources and potential application to ALEt & ALC
  • Innovative approaches to atomic layer material removal
  • Novel device applications of ALEt & ALC
  • Process chamber design considerations
  • Advanced delivery of chemicals to processing chambers
  • Metrology and control of ALEt & ALC
  • Device performance impact
  • Synthesis of new chemistries for ALEt & ALC application
  • Damage free surface defect removal
  • Process and discharge modeling

Find out more!

Deadline for submission of manuscripts is December 17, 2014.

Please submit manuscripts here.

The ECS Journal of Solid State Science and Technology (JSS) is one of the newest peer-reviewed journals from ECS launched in 2012.

The ECS Journal of Solid State Science and Technology (JSS) is one of the newest peer-reviewed journals from ECS launched in 2012.

Printing technologies in an atmospheric environment offer the potential for low-cost and materials-efficient alternatives for manufacturing electronics and energy devices such as luminescent displays, thin film transistors, sensors, thin film photovoltaics, fuel cells, capacitors, and batteries.

This focus issue will cover state-of-the-art efforts that address a variety of approaches to printable functional materials and devices.

Topics of interest include but are not limited to:

  • Printable functional materials: metals; organic conductors; organic and inorganic semiconductors; and more
  • Functional printed devices: RFID tags and antenna; thin film transistors; solar cells; and more
  • Advances in printing and conversion processes: ink chemistry; ink rheology; printing and drying process; and more
  • Advances in conventional and emerging printing techniques: inkjet printing; aerosol printing; flexographic printing; and more

Find out more!

Deadline for submission of manuscripts is November 30, 2014.

Please submit manuscripts here.

Brainstorming

Over 100 researchers were guided through a brainstorming and working group session with the theme of improving access to clean water and sanitation in developing countries.

ECS is awarding $210,000 of seed funding to four innovative research projects addressing critical technology gaps in water, sanitation, and hygiene challenges being faced around the world.

Winners of the first Science for Solving Society’s Problems Challenge:

Artificial Biofilms for Sanitary/Hygienic Interface Technologies (A-Bio SHIT)
Plamen Atanassov, University of New Mexico, $70,000
Interfaces: Produce bio-catalytic septic cleaning materials that incorporate microorganisms removing organic and inorganic contaminants, while simultaneously creating electricity (or hydrocarbon fuel) for energy generation in support of a sustainable and portable system.

In-situ Electrochemical Generation of the Fenton Reagent for Wastewater Treatment
Luis Godinez, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC, Mexico, $50,000
Disinfection: Study the electro-Fenton approach using activated carbon to efficiently oxidize most of the organic and biological materials present in sanitary wastewater so that recycling of the wastewater might be possible.

powerPAD
Neus Sabate, Institut de Microelectrónica de Barcelona (CSIC); Juan Pablo Esquivel, University of Washington; Erik Kjeang, Simon Fraser University, $50,000
Monitoring and Measurement: Develop a non-toxic portable source of power for water measuring and monitoring systems, which will not require recycling facilities. Using inexpensive materials such as paper, nanoporous carbon electrodes and organic redox species, the team will strive to create a biodegradable and even compostable power source.

More than MERe microbes: Microbial Electrochemical Reactors for water reuse in Africa
Gemma Reguera, Michigan State University, $40,000
Chemical Conversion: Develop microbial electrochemical reactors that harvest energy from human waste substrates using bioanodes engineered to process the waste into biofuels while simultaneously cleaning water for reuse. The microbial catalysts will be selected for their efficiency at processing the wastes, but also for their versatility to process other residential and agricultural waste substrates. This will provide an affordable, easy to operate system for the decentralized processing of a wide range of wastes for improved sanitation, water reuse, and energy independence.

(more…)

2014 ECS/SMEQ Meeting in the Books

Edison Theatre

“Pee to Energy” demo at the Edison Theatre in the exhibit hall in Cancun, Mexico. Rob Gerth, Gerri Botte, and Madhi Muthuvel getting ready to go.

I’m working on an official review of what happened at the meeting. In the meantime, I’ve been looking at some of the photos which got me thinking about the adventure that is an ECS meeting.

A couple of quick hits first:

(more…)

ECS Connections to 2014 Physics Nobel Prize

The 2014 Nobel Prize in Physics has been awarded to Shuji Nakamura, a professor at the University of California

Shuji Nakamura, the recipient of the 2014 Nobel Prize in Physics and former ECS Plenary speaker, is awarded for his invention of efficient blue light-emitting diodes.
Credit: Randall Lamb

The 2014 Nobel Prize in Physics has been awarded to Shuji Nakamura, professor of materials and of electrical and computer engineering at the University of California and 2010 ECS Plenary speaker.

The prize is for the invention of efficient blue light-emitting diodes, which has enabled bright and energy-saving white light sources, and is shared with ECS member Isamu Akasaki of Meijo University and Nagoya University, Japan; and Hiroshi Amano of Nagoya University.

In his plenary talk at the 218th ECS Meeting in Las Vegas, Nevada, Nakamura described the current status of III-nitride based light emitting diodes (LEDs) and laser diodes. Nitride-based white LEDs have been used for many application such as LCD TV backlight, lighting for inside/outside applications and others.

According to the Royal Swedish Academy of Sciences, when Nakamura, Akasaki and Amono “produced bright blue light beams from their semiconductors in the early 1990s, they triggered a fundamental transformation of lighting technology. Red and green diodes had been around for a long time, but without blue light, white lamps could not be created. Despite considerable efforts, both in the scientific community and in industry, the blue LED had remained a challenge for three decades.”

The LED lamp “holds great promise for increasing the quality of life for over 1.5 billion people around the world who lack access to electricity grids,” the academy continued.

Here’s a list of articles in the ECS Digital Library written by the 2014 Physics Nobel Prize Winners. You can look at them for free:

Hiroshi Amano and Isamu Akasaki

Widegap Column-III Nitride Semiconductors for UV/Blue Light Emitting Devices

Growth and Luminescence Properties of Mg-Doped GaN Prepared by MOVPE

Isamu Akasaki

Epitaxial Growth and Properties of AIxGal.xN by MOVPE

Etching Characteristics and Light Figures of the {111} Surfaces of GaAs

Shuji Nakamura

Piezoelectric Field in Semi-Polar InGaN/GaN Quantum Wells

Read more about Shuji Nakamura’s plenary talk.

Read more about 2014 Nobel Prize winners for Physics.

  • Page 3 of 4