By: Joshua D. Rhodes, University of Texas at Austin

Solar panelsEditor’s note: On Jan. 22, 2018, the Trump administration announced plans to impose punitive duties on solar panels imported from abroad. This decision came in response to a complaint filed by two solar companies, but much of the industry opposes the action, which trade groups say will increase the cost of solar projects and depress demand. To illustrate what’s at stake, energy scholar Joshua Rhodes provides some context on the U.S. solar industry and its opportunities and challenges.

How big is the U.S. solar industry, and what is its growth trajectory?

The U.S. solar industry generated US$154 billion in economic activity in 2016, including direct sales, wages, salaries, benefits, taxes and fees. Its revenues have grown from $42 million in 2007 to $210 million in 2017.

About 25 percent of total new power plant capacity installed in 2017 came from solar. Total installed U.S. solar capacity is over 50 gigawatts – the equivalent generating capacity of 50 commercial nuclear reactors.

(more…)

A new water-based air-conditioning system cools air to as low as 18 degrees Celsius (about 64 degrees Fahrenheit) without using energy-intensive compressors and environmentally harmful chemical refrigerants.

This technology could potentially replace the century-old air-cooling principle that is still used in modern-day air-conditioners. Suitable for both indoor and outdoor use, the new system is portable and can be customized for all types of weather conditions.

The team’s novel air-conditioning system is cost-effective to produce, and it is also more eco-friendly and sustainable.

(more…)

Li-ion fuel cell

Superior high-voltage performance of Li-ion full cell with Li-rich layered oxide cathode prepared with fluorinated polyimide (FPI) binder, compared to the cell with conventional binder PVdF. (Click to enlarge.)
Image: Seung Wan Song

In order to increase the driving range of electric vehicles, researchers across the globe are working to develop lithium-ion batteries with higher energy storage. Now, scientists at Chungnam National University and Kumoh National Institute of Technology in Korea are taking a step toward that goal with their development of the first high-voltage cathode binder for higher energy Li-ion batteries.

Today’s Li-ion batteries are limited to charge to 4.2V due to the electrochemical instability of the liquid electrolyte and cathode-electrolyte interface, and loosening of conventional binder, polyvinylidenefluoride (PVdF), particularly at elevated temperatures. The fabrication of Li-rich layered oxide cathode with a novel high-voltage binder, as the research team demonstrated, can overcome these limitations.

Charging the batteries with Li-rich layered oxide cathode (xLi2MnO3∙(1−x)LiMO2, M = Mn, Ni, Co) to higher than 4.5V produces approximately doubled capacity than those with LiCoO2 cathode, so that doubled energy density batteries can be achieved.

(more…)

Fuel CellApplying a tiny coating of costly platinum just 1 nanometer thick—about 1/100,000th the width of a human hair—to a core of much cheaper cobalt could bring down the cost of fuel cells.

This microscopic marriage could become a crucial catalyst in new fuel cells that use generate electricity from hydrogen fuel to power cars and other machines. The new fuel cell design would require far less platinum, a very rare metal that sold for almost $900 an ounce the day this article was produced.

“This technique could accelerate our launch out of the fossil-fuel era,” says Chao Wang, an assistant professor of chemical and biomolecular engineering at Johns Hopkins University and senior author of a study published in the journal Nano Letters.

“It will not only reduce the cost of fuel cells,” Wang says. “It will also improve the energy efficiency and power performance of clean electric vehicles powered by hydrogen.”

(more…)

BiofuelNew research stitches together the best parts of several different bacteria to synthesize a new biofuel product that matches current engines better than previously produced biofuels.

“My lab is interested in developing microbial biosynthetic processes to make biofuels, chemicals, and materials with tailored structures and properties,” says Fuzhong Zhang, associate professor at the School of Engineering & Applied Science at Washington University in St. Louis. “Previously, we engineered E.coli to produce a precursor compound that leads to the production of advanced biofuels. In this work, we took the next step toward the actual manufacture.”

Zhang’s research focuses on engineering metabolic pathways that, when optimized, allow the bacteria to act as a biofuel generator. In its latest findings, recently published in Biotechnology for Biofuels, Zhang’s lab used the best bits of several other species—including a well-known pathogen—to enable E. coli to produce branched, long-chain fatty alcohol (BLFL), a substance that can be used as a freeze-resistant, liquid biofuel.

(more…)

Poplar treeNew research indicates that poplar trees could be an economically viable biofuel material.

In the quest to produce affordable biofuels, poplars are one of the Pacific Northwest’s best bets—the trees are abundant, fast-growing, adaptable to many terrains, and their wood can become substances used in biofuel and high-value chemicals that we rely on in our daily lives.

But even as researchers test poplars’ potential to morph into everything from ethanol to chemicals in cosmetics and detergents, a commercial-scale processing plant for poplars has yet to be achieved. This is mainly because production costs still are not competitive with the current price of oil.

Now, a team of researchers is trying to make poplar a viable competitor by testing the production of younger poplar trees that could be harvested more frequently—after only two or three years—instead of the usual 10- to 20-year cycle.

(more…)

PhotosynthesisResearchers have traced the paths of three water channels in an ancient photosynthetic organism—a strain of cyanobacteria—to provide the first comprehensive, experimental study of how that organism uses and regulates water to create energy.

The finding advances photosynthesis research but also presents an advance in green fuels research.

Photosynthesis is the chemical conversion of sunlight into chemical energy via an electron transport chain essential to nearly all life on our planet. All plants operate by photosynthesis, as do algae and certain varieties of bacteria.

‘Damage trails’

To convert sunlight into a usable form of energy, photosynthetic organisms require water at the “active site” of the Photosystem II protein complex. But the channels through which water arrives at the active site are difficult to measure experimentally. Reactive oxygen species are produced at the active site and travel away from it, in the opposite direction as water, leaving a “damage trail” in their wake.

“We identified the damaged sites in Photosystem II using high-resolution mass spectrometry and found that they reveal several pathways centered on the active site and leading away from it all the way to the surface of the complex,” says lead study author Daniel A. Weisz, a postdoctoral researcher in biology at Washington University in St. Louis.

(more…)

By: Joshua M. Pearce, Michigan Technological University

EnergyWithin the next month, energy watchers expect the Federal Energy Regulatory Commission to act on an order from Energy Secretary Rick Perry that would create new pricing rules for certain power plants that can store fuel on site to support grid resilience. This initiative seeks to protect coal-fired and nuclear power plants that are struggling to compete with cheaper energy sources.

Perry’s proposed rule applies to plants that operate in regions with deregulated power markets, where utilities normally compete to deliver electricity at the lowest price. To qualify, plants would have to keep a 90-day fuel supply on site. Each qualified plant would be allowed to “recover its fully allocated costs.”

In other words, plant owners would be able to charge enough to cover a range of costs, including operating costs, costs of capital and debt, and investor returns. Federal Energy Regulatory Commission Chair Neil Chatterjee has stated that the extra money to keep coal and nuclear plants running “would come from customers in that region, who need the reliability.”

(more…)

Matt Murbach

Matthew Murbach, co-founder of Battery Informatics, Inc.

Matthew Murbach, founding president of the ECS student chapter at the University of Washington (UW) and motivating force behind the launch of the ECS Data Sciences Hack Day, has been named to the Forbes 30 Under 30 list in the area of energy. According to Forbes, Murbach was recognized for his work “to commercialize battery management breakthroughs to enable faster charging, finer control over degradation and longer lifetimes.”

Murbach is co-founder of Battery Informatics, Inc. and a PhD student in chemical engineering at the University of Washington. Murbach’s PhD research is exploring new ways to diagnose the state of health in batteries, a critical and expensive asset in the emerging low carbon energy economy.

Battery Informatics is a next-generation battery management company focused on capturing the maximum value of energy storage through software solutions. The company is licensing UW intellectual property to extract the maximum value from these battery assets over the whole battery lifecycle. Just this month, they are flipping the switch on their first customer installation.

(more…)

ECS Lecture with Steven Chu

The ECS Lecture during the 232nd ECS Meeting in National Harbor, MD, was delivered by Steven Chu. Chu is currently the William R. Kenan, Jr., Professor of Physics and Professor of Molecular & Cellular Physiology at Stanford. Previously, he served as U.S. Secretary of Energy under President Obama and was the co-recipient of the 1997 Nobel Prize in Physics for his contribution to laser cooling and atom trapping.

Chu’s ECS Lecture, “The Role of Electrochemistry in our Transition to Sustainable Energy,” focused on the risks society is facing due to changing climate, the evolving energy landscape, and the role of electrochemistry in providing critical technological advances.

During his lecture, Chu outlined the risks that modern society faces, which demand technological innovation to provide solutions. Namely, Chu stated that the rising climate poses significant risks to the global community. According to Chu, the Earth has warmed by an alarming one degree Celsius since 1975.

“One degree Celsius does not sound like a lot, but just a couple of degrees warmer would make a dramatic difference,” Chu said. “If the Earth does warm by two degrees Celsius, Boston will be underwater.”

(more…)

  • Page 3 of 29