By: Elton Santos, Queen’s University Belfast

CarbonScientists have found a way to make carbon both very hard and very stretchy by heating it under high pressure. This “compressed glassy carbon”, developed by researchers in China and the US, is also lightweight and could potentially be made in very large quantities. This means it might be a good fit for several sorts of applications, from bulletproof vests to new kinds of electronic devices.

Carbon is a special element because of the way its atoms can form different types of bonds with each other and so form different structures. For example, carbon atoms joined entirely by “sp³” bonds produce diamond, and those joined entirely by “sp²” bonds produce graphite, which can also be separated into single layers of atoms known as graphene. Another form of carbon, known as glassy carbon, is also made from sp² and has properties of both graphite and ceramics.

But the new compressed glassy carbon has a mix of sp³ and sp² bonds, which is what gives it its unusual properties. To make atomic bonds you need some additional energy. When the researchers squeezed several sheets of graphene together at high temperatures, they found certain carbon atoms were exactly in the right position to form sp³ bonds between the layers.

By studying the new material in detail, they found that just over one in five of all its bonds were sp³. This means that most of the atoms are still arranged in a graphene-like structure, but the new bonds make it look more like a large, interconnected network and give it greater strength. Over the small scale of individual graphene sheets, the atoms are arranged in an orderly, hexagonal pattern. But on a larger scale, the sheets are arranged in a disorderly fashion. This is probably what gives it the combined properties of hardness and flexibility.

(more…)

Carbon dioxideThe global development of industry, technology, and the transportation sector has resulted in massive consumption of fossil fuels. As these fuels are burned, emissions are released—namely carbon dioxide. According to the U.S. Environmental Protection Agency, combustion of petroleum-based products resulted in 6,587 million metric tons of carbon dioxide released into the environment in 2015. But what if we could capture the greenhouse gas and not only convert it, but potentially make a huge profit?

That’s exactly what ECS member Stuart Licht is looking to do.

In a new study, Licht and his team demonstrate using carbon dioxide and solar thermal energy to produce high yields of millimeter-lengths carbon nanotube (CNT) wool at a cost of $660 per ton. According to marketplace values, these CNTs, which have applications ranging from textiles to cement, could then be sold for up to $400,000 per ton.

“We have introduced a new class of materials called ‘Carbon Nanotube Wool,’ which are the first CNTs that can be directly woven into a cloth, as they are of macroscopic length and are cheap to produce,” Licht, a chemistry professor at George Washington University, tells Phys.org. “The sole reactant to produce the CNT wools is the greenhouse gas carbon dioxide.”

(more…)

In May 2017 during the 231st ECS Meeting, we sat down with 2016-2017 ECS Toyota Young Investigator Fellowship winner, Elizabeth Biddinger, to discuss green chemistry, sustainable engineering, and the future of transportation. The conversation was led by Amanda Staller, ECS’s web content specialist.

Biddinger is an assistant professor at the City College of New York, part of the City University of New York system. There, she leads a research group that covers research areas ranging from electrocatalysis to ionic liquids. Her work in switchable electrolytes earned her a spot among the 2016-2017 fellowship winners.

Listen to the podcast and download this episode and others for free on Apple Podcasts, SoundCloud, Podbean, or our RSS Feed. You can also find us on Stitcher and Acast.

(more…)

Solar PanelResearchers have created a concentrating photovoltaic (CPV) system with embedded microtracking that is capable of producing 50 percent more energy per day than the standard silicon solar cells.

“Solar cells used to be expensive, but now they’re getting really cheap,” says Chris Giebink, an assistant professor of electrical engineering at Penn State.

“As a result, the solar cell is no longer the dominant cost of the energy it produces. The majority of the cost increasingly lies in everything else—the inverter, installation labor, permitting fees, etc.—all the stuff we used to neglect,” he says.

This changing economic landscape has put a premium on high efficiency. In contrast to silicon solar panels, which currently dominate the market at 15 to 20 percent efficiency, concentrating photovoltaics focus sunlight onto smaller, but much more efficient solar cells like those used on satellites, to enable overall efficiencies of 35 to 40 percent.

(more…)

ECS Journal Article Types

ECS journalsECS believes that the key to sustainability is the ability to adapt. For over 115 years, ECS has been committed to publishing high quality, peer-reviewed research at the cutting edge of innovation.

But the demands of the research arena are always changing. As the scientific community develops new needs out in the field, so must ECS—as a leading nonprofit publisher—develop new avenues and more inclusive platforms for publication and dissemination.

To best accommodate the needs of contemporary scientific research, ECS’s journals, the Journal of The Electrochemical Society and the ECS Journal of Solid State Science and Technology, are open to article submission types beyond that of the standard-issue research paper. As of 2017, ECS accepts journal submissions of five different types.

Whether you’re an author, an editor, or a reader of ECS publications, it’s beneficial to be familiar with the five ECS journal article types.

(more…)

BatteryLithium-ion batteries power a vast majority of the world’s portable electronics, from smartphones to laptops. A standard lithium-ion batteries utilizes a liquid as the electrolyte between two electrodes. However, the liquid electrolyte has the potential to lead to safety hazards. Researchers from MIT believe that by using a solid electrolyte, lithium-ion batteries could be safer and able to store more energy. However, most research in the area of all-solid-state lithium-ion batteries has faced significant barriers.

According to the team from MIT, a reason why research into solid electrolytes has been so challenging is due to incorrect interpretation of how these batteries fail.

This from MIT:

The problem, according to this study, is that researchers have been focusing on the wrong properties in their search for a solid electrolyte material. The prevailing idea was that the material’s firmness or squishiness (a property called shear modulus) determined whether dendrites could penetrate into the electrolyte. But the new analysis showed that it’s the smoothness of the surface that matters most. Microscopic nicks and scratches on the electrolyte’s surface can provide a toehold for the metallic deposits to begin to force their way in, the researchers found.

(more…)

Micromotors Powered by Bacteria

Researchers are using genetically engineered E. coli to power micromotors, with the swimming bacteria causing the motors to rotate in a similar fashion to a river rotating a watermill.

“Our design combines a high rotational speed with an enormous reduction in fluctuation when compared to previous attempts based on wild-type bacteria and flat structures,” says Roberto Di Leonardo, co-author of the new research. “We can produce large arrays of independently controlled rotors that use light as the ultimate energy source. These devices could serve one day as cheap and disposable actuators in microrobots for collecting and sorting individual cells inside miniaturized biomedical laboratories.”

(more…)

ECSTA new issue of ECS Transactions (ECST) has just been published. This issue incorporates 333 papers from the upcoming 15th International Symposium on Solid Oxide Fuel Cells (SOFC-XV). This conference will be held in Hollywood, Florida, USA, July 23-28, 2017.

ECST Volume 78, Issue 1 is now available in the ECS Digital Library. This issue is also available for purchase as an electronic (PDF) edition through the ECS Online Store.

Learn more about this upcoming conference and find out more about ECST.

I4OC logoECS is proud to announce its partnership with the Initiative for Open Citations (I4OC). By joining forces with I4OC, ECS has opened up citation data, further expanding accessibility to scientific knowledge by releasing into the public domain reference data published in ECS journals.

This partnership aligns directly with ECS’s Free the Science initiative, which seeks to make our peer-reviewed research free to all readers while remaining free for authors to publish.

“We applaud the efforts of I4OC. In addition to our significant amount of open access full-text content, we are excited to be able to provide yet another mechanism for researchers to freely access a very important part of ECS content,” says Mary Yess, chief content officer for ECS. “Opening up our citations will not only allow scientists and engineers easy access; but because the citations are in common, machine-readable formats, this will also allow them to data mine those citations. All of these open access opportunities are a critical to progress in our fields and others.”

Since its establishment in April, I4OC has worked to partner with publishers to provide accessible citation data. Citations are a central component to scholarly information, providing credibility to statements and bolstering overall discovery and dissemination by highlighting research.

(more…)

EnergyIn an effort to expand South Australia’s renewable energy supply, the state has looked to business magnate Elon Musk to build the world’s largest lithium-ion battery. The goal of the project is to deliver a grid-scale battery with the ability to stabilize intermittency issues in the area as well as reduce energy prices.

An energy grid is the central component of energy generation and usage. By changing the type of energy that powers that grid in moving from fossil fuels toward more renewable sources, the grid itself changes. Traditional electrical grids demand consistency, using fossil fuels to control production for demand. However, renewable sources such as wind and solar provide intermittency issues that traditional fossil fuels do not. Researchers must look at how we can deliver energy to the electrical grid when the sun goes down or the wind stops blowing. This is where energy storage systems, such as batteries, play a pivotal role.

In South Australia, Musk’s battery is intended to sustain 100 megawatts of power and store that energy for 129 megawatt hours. To put it in perspective, that is enough energy to power 30,000 homes and, according to Musk, will be three times as powerful as the world’s current largest lithium-ion battery.

Musk hopes to complete the project by December, stating that “It’s a fundamental efficiency improvement to the power grid, and it’s really quite necessary and quite obvious considering a renewable energy future.”

(more…)