Society, division, and section awards

ECS is pleased to announce the 11 award winners for the Society’s spring biannual meeting.

All awards will be presented at the upcoming 231st ECS Meeting, taking place May 28-June 1, 2017 in New Orleans, LA, where ECS will celebrate its 115th anniversary.

“ECS has a rich history of providing award recognition for scientists and engineers in our field,” says Roque Calvo, executive director of ECS. “The awards being presented at the 231st ECS Meeting highlight some of the most influential researchers in the fields of electrochemical and solid state science.”

Doron Aurbach will receive the 2017 Allen J. Bard Award in Electrochemical Science in recognition of his distinguished contributions to the field. Aurbach is a professor in the Department of Chemistry at Bar-Ilan University in Israel, where he and his team research and develop rechargeable high energy density batteries and supercapacitors, as well as novel electro-analytical and spectro-electrochemical methods for sensitive electrochemical systems. He has published more than 540 papers and is a technical editor of the Journal of The Electrochemical Society (JES).

“The Electrochemical Society is my scientific home,” Aurbach says. “I’ve been affiliated with the Society from the beginning of my career, nearly 35 years ago. Receiving this award is one of the greatest moments of my scientific career.”

(more…)

Posted in Awards
Tagged ,

By: Petr Vanýsek

Edward AchesonThe discovery of an electric arc can be tied to the use of an electrochemical energy source. Sir Humphry Davy described in 1800 an electric discharge using electrochemical cells1 that produced what we would call a spark, rather than an arc. However, in 1808, using an electrochemical battery containing 2000 plates of copper and zinc, he demonstrated an electric arc 8cm long. Davy is also credited with naming the phenomenon an arc (Fig. 1). An electric arc was also discovered independently in 1802 by Russian physicist Vasily Petrov, who also proposed various possible applications including arc welding. There was a long gap between the discovery of the electric arc and putting it to use.

Electrochemical cells were not a practical source to supply a sustained high current for an electric arc. A useful application of this low voltage and high current arc discharge became possible only once mechanical generators were constructed. Charles Francis Brush developed a dynamo, an electric generator, in 1878, that was able to supply electricity for his design of arc lights. Those were deployed first in Philadelphia and by 1881 a number of cities had electric arc public lights. Once that happened, the application and new discoveries for the use of the electric arc followed. Electric arc for illumination was certainly in the forefront. First, electric light extended greatly the human activities into the night and second, public street electric lights, attracting masses of spectators, were the source of admiration, inspiration, and no doubt, more invention.

(more…)

Get the ECS Mobile App

ECS appECS now has an app for your mobile device. Follow the latest research published in ECS journals, the newest Redcat blog posts, and get instant access to the ECS podcasts and videos all in one place. It also includes the meeting scheduler for the upcoming ECS biannual meeting.

Go to the App Store or Google Play and search “ECS Mobile.”

Ajit KhoslaAjit Khosla is a professor at Yamagata University in Yonezawa, Japan and a visiting professor at San Diego State University’s College of Engineering. Khosla’s work in the area of nano-microsystems has resulted in more than 100 scientific and academic contributions. Khosla has recently been named associate editor for the Journal of The Electrochemical Society (JES).

The Electrochemical Society: What do you hope to accomplish in your role as associate editor?

Ajit Khosla: As an associate editor, I hope to accomplish quick and fair peer review process, as little as three weeks from submission. I would like to encourage and convince scientists and scholars from all over the world, including ones who are presenting their work at ECS meetings, to strongly consider submitting full-length journal papers to the Journal of The Electrochemical Society. I will also be focusing on to soliciting high-quality papers in the sensor topical interest area in biosensors, micro-nano fabricated sensors, systems & devices for healthcare, and environmental monitoring.

(more…)

BatteryWhen a battery is used, electrically charged ions travel between electrodes, causing those electrodes to shrink and swell. For some time, researchers have wondered why the electrode materials – which are fairly brittle – don’t crack in the expansion and contraction styles.

Now, a team of researchers from MIT, led by ECS member Yet-Ming Chiang, may have found the answer to this mystery.

This from MIT:

While the electrode materials are normally crystalline, with all their atoms neatly arranged in a regular, repetitive array, when they undergo the charging or discharging process, they are transformed into a disordered, glass-like phase that can accommodate the strain of the dimensional changes.

(more…)

Your Thoughts on ORCID iD

In 2014, ECS became a member of the Open Researcher and Contributor ID (ORCID) registry. ORCID is an open, non-profit, community-based effort founded by academic institutions, professional bodies, funding agencies, and publishers to create and maintain a registry of unique researcher identifiers intended to remedy the systemic name ambiguity problem seen in scholarly research. ORCID resolves the confusion brought about by name changes, the cultural differences in name order presentation, and the inconsistent use of first-name and middle-name abbreviations on published research papers.

ECS wants to learn more about your perspective on ORCID iD. Take our survey below!

Create your own user feedback survey

ORCID iDs are free to obtain and use. The registration process is integrated into the ECS journals submission site, ECSxPress (ExP) for convenience.

Don’t have an ORCID iD? Learn more and register today!

An interview with Isamu Akasaki

Isamu AkasakiOn June 8, 2016, Yue Kuo, an ECS fellow and vice president of The Electrochemical Society, traveled to the Akasaki Institute at Nagoya University in Japan to talk with Isamu Akasaki, a Nobel Prize winner and ECS life member.

Professor Akasaki is a materials scientist specializing in semiconductor science and technology. He is a pioneer of efficient blue light-emitting diodes which have enabled bright and energy-saving white light sources. He shares the 2014 Nobel Prize in Physics with Hiroshi Amano and Shuji Nakamura for this work. Prior to their groundbreaking work, scientists had produced LEDs that emitted red or yellow-green light, but not blue. Blue had been thought impossible or impractical to make. Blue LEDs became commercially available in 1994.

The new combination of blue, green, and red LEDs produces white light, and blue LEDs coated with YAG:Ce yellow phosphor appear white to the eye and can be developed for much less energy than that from incandescent and fluorescent lamps, which contain toxic mercury. Prof. Akasaki’s work helped lead to the development of blue semiconductor lasers, which proved useful for high-capacity optical-media devices such as Blu-ray disc players.

What follows is an edited transcript of the conversation between Yue Kuo and Isamu Akasaki, which they had in English.

(more…)

Focus IssuesThe ECS Journal of Solid State Science and Technology is now featuring a focus issue on Thermoelectric Materials & Devices: Phonon Engineering, Advanced Materials and Thermal Transport. The issue reflects the symposia from the 228th ECS Meeting on Thermoelectric and Thermal Interface Materials in Phoenix, AZ.

In the issue’s preface, the authors tell us that advances in this field, “. . . can inspire developments in thermoelectrics that may underpin the next major advance in energy harvesting and cooling and ultimately improve the quality of our devices, and help drive energy efficiency and a greener society.”

The focus issue discusses advances, challenges, and applications in thermoelectrics and its various sub-fields such as phonon transport physics, materials science, electronics, condensed matter physics, engineering, the chemistry of materials, and processing technology.

The Society would like to thank the authors, reviewers, and editors who contributed to this focus issue. Special thank you to Colm O’Dwyer from University College Cork, Renkun Chen from the University of California, San Diego, Jr-Hau He from King Abdulla University of Science and Technology, Jaeho Lee from the University of California Irvine, and Kafil M. Razeeb from University College Cork.

Read the focus issue in the ECS Digital Library.

By: Roque Calvo, ECS Executive Director

ECS at 115In April 1902, upon the conclusion of the Society’s first meeting in Philadelphia, the Society’s first president wrote the column below, which was printed in the Society’s first publication, explaining the rationale to form the American Electrochemical Society.

Evidence accumulates on every hand that the analogue of the specialist in science is the society which specializes. Whether for good or ill, whether some of its influences are narrowing in some directions or not, the society which specializes is the necessary corollary of the scientific specialist; the latter came perforce into existence, has made the whole world his debtor, and is recognized as the present factor for progress; the former is coming perforce into existence, will soon make the world its immeasurable debtor, and will be a wonderfully potent factor in future scientific progress.

Such is the force, the necessary condition, which has brought into existence The American Electrochemical Society. … Its functions should be those of bringing electrochemists into personal contact with each other; of disseminating among them all the information known to, and which can be spared by, their co-workers; to stimulate original thought in these lines by
mutual interchange of experience, and by papers and discussions; to stimulate electrochemical work all over the world. …

Such a society … being, therefore, a necessity, a pressing need, its formation was inevitable. It came. … The results have justified the insight of the projectors of the society, the first meeting has been an enthusiastic success, the organization now exists, its future is one of assured usefulness. With confidence we stand out to sea.

(more…)

Posted in Announcements
Tagged ,

By: Jens Blotevogel, Colorado State University

Solar fieldWithout knowing it, most Americans rely every day on a class of chemicals called per- and polyfluoroalkyl substances, or PFASs. These man-made materials have unique qualities that make them extremely useful. They repel both water and grease, so they are found in food packaging, waterproof fabric, carpets and wall paint. The Conversation

PFASs are also handy when things get heated. Consumers value this property in nonstick frying pans. Government agencies and industry have used them for decades to extinguish fires at airports and fuel storage facilities.

However, widespread use of PFASs has led to extensive contamination of public water systems. Today, these substances can be found in the blood serum of almost all U.S. residents. Exposure to PFASs has been linked to kidney and testicular cancer, as well as developmental, immune, hormonal and other health issues.

But removing them from the environment is not easy. Chemical bonds between fluorine and carbon – the backbone of PFAS molecules – are extremely strong. PFASs can be removed from water by filtering them out, but the used filters have to be disposed of afterwards, and landfilling only transfers the problem to another location. The best solution to the problem is to break down PFASs completely – and on that score, we’re making progress.

(more…)

Tagged ,