ECSTBeginning today, ECS is running a sale on ECS Transactions, specifically on ECST PRiME Meeting “Enhanced” Issues and select other ECST issues. For the next few weeks, a discount of 25% will be automatically applied to any ECST product when added to your cart. The discount will be reflected once you begin the check-out process.

Please visit the ECS Online Store and take advantage of this sale! Any ECST PRiME Meeting “Enhanced” Issues ordered by October 2, 2016 can be picked up for free at the ECS Publications Booth at the PRiME 2016 Meeting in Honolulu, Hawaii.

Please visit the ECS Digital Library for more information on all ECS Transactions issues.

Posted in Publications

ECS Open Access Week Competition 2016

OAlogoHere at ECS we are already preparing for Open Access Week 2016 (October 24-30). This year’s theme is “Open in Action”.

We are taking action with our Free the Science initiative – and we hope you will take action too by sharing your Open Access story with us! We want to know how Open Access is affecting you – what has OA helped you to accomplish? How is OA making a difference to you personally?

Submit your brief essay (200-400 words) for a chance to win a cash prize, and (if applicable) additional funding for your student chapter. These funds could be used to send chapter members to an ECS meeting, other conferences, invite speakers to campus, or to host any number of extra events for your chapter. Any funds not spent this year will be rolled over to the next. (more…)

Share Your Success in Interface

InterfaceCalling all ECS members! Has your section or student chapter achieved something momentous in recent months, or will it do so before mid-October? Tell us about it and you just might see your submission published. ECS wants to highlight YOUR news in the Winter 2016 edition of Interface!

ECS takes pride in its members and is consistently honored to call attention to their accomplishments and share their stories. Please do not hesitate to inform us of noteworthy events or developments in your section or student chapter. We want to recognize your successes!

Please note: While Interface actively encourages submissions of news from sections and thus places few restrictions upon them, certain guidelines must be adhered to in preparing submissions.

(more…)

Enzyme-based sensors detect lactate levels in sweat

Sweat Sensor

Image: Sergio Omar Garcia

It may be clammy and inconvenient, but human sweat has at least one positive characteristic – it can give insight to what’s happening inside your body. A new study published in the ECS Journal of Solid State Science and Technology aims to take advantage of sweat’s trove of medical information through the development of a sustainable, wearable sensor to detect lactate levels in your perspiration.

“When the human body undergoes strenuous exercise, there’s a point at which aerobic muscle function becomes anaerobic muscle function,” says Jenny Ulyanova, CFD Research Corporation (CFDRC) researcher and co-author of the paper. “At that point, lactate is produce at a faster rate than it is being consumed. When that happens, knowing what those levels are can be an indicator of potentially problematic conditions like muscle fatigue, stress, and dehydration.”

Utilizing green technology

Using sweat to track changes in the body is not a new concept. While there have been many developments in recent years to sense changes in the concentrations of the components of sweat, no purely biological green technology has been used for these devices. The team of CFDRC researchers, in collaboration with the University of New Mexico, developed an enzyme-based sensor powered by a biofuel cell – providing a safe, renewable power source.

Biofuel cells have become a promising technology in the field of energy storage, but still face many issues related to short active lifetimes, low power densities, and low efficiency levels. However, they have several attractive points, including their ability to use renewable fuels like glucose and implement affordable, renewable catalysts.

(more…)

For-science or For-profit?

Overcoming barriers in scholarly publishing

ResearchIn 1995, Forbes published an article entitled, “The Internet’s first victim?” In the article, author John Hayes predicted the world of commercial, for-profit scholarly publishing would suffer under the thumb of the internet and begin the slow process of fizzling out for lack of ability to turn a profit.

Turns out he was wrong.

Commercial scientific publishing has adapted to the times, becoming a multi-billion dollar industry; a $25.2 billion industry to be exact.

The rise of the for-profits

According to CBC News, the top for-profit scientific publishers report profit margins of nearly 40 percent, making some of those margins even higher than that of companies like Apple and Google.

The divide between ECS publications and that of top commercial publishers has deep roots. In the early days of scientific publishing, most journals came out of nonprofit scientific societies like ECS. However, the digital age changed things. It did not stifle the commercial publisher as Hayes thought, instead it hurt the scientific societies. Because the cost to make the switch from print to digital was so high, many societies sold their journals to large, for-profit publishers.

The top five largest, for-profit, academic publishers now publish 53 percent of all scientific papers in natural and medical sciences, but ECS still remains as one of the last independent scientific society publishers, and is still committed to the initial vision of the journals: to disseminate scientific research to the broadest possible audience with the fewest barriers.

(more…)

The Changes are ComingNow that more and more publishers are requiring ORCID iDs, and with the advent of ORCID’s Collect & Connect program, ORCID has been receiving an onslaught of questions about how to properly display ORCID iDs.

When ORCID first released its guidelines on collection and display in 2013, the publishing environment was very different and ORCID was still very young. The constantly changing publishing landscape coupled with the widespread uptake of ORCID iDs has created a need to reevaluate these practices and address any gaps or frequently asked questions.

In order to accomplish this, ORCID has gathered a group of publishing professionals to look at the document and create recommendations for a new set of guidelines. To be successful, these professionals must use their publishing experience, coupled with suggestions from the community. (more…)

JSS Editors’ Choice article discusses AlGaN/GaN HEMTs

When it comes to putting technology in space, size and mass are prime considerations. High-power gallium nitride-based high electron mobility transistors (HEMTs) are appealing in this regard because they have the potential to replace bulkier, less efficient transistors, and are also more tolerant of the harsh radiation environment of space. Compared to similar aluminum gallium arsenide/gallium arsenide HEMTs, the gallium nitride-based HEMTs are ten times more tolerant of radiation-induced displacement damage.

Until recently, scientists could only guess why this phenomena occurred: Was the gallium nitride material system itself so inherently disordered that adding more defects had scant effect? Or did the strong binding of gallium and nitrogen atoms to their lattice sites render the atoms more difficult to displace?

The answer, according to scientists at the Naval Research Laboratory, is none of the above.

Examining radiation response

In a recent open access article published in the ECS Journal of Solid State Science and Technology entitled, “On the Radiation Tolerance of AlGaN/GaN HEMTs,” the team of researchers from NRL state that by studying the effect of proton irradiation on gallium nitride-based HEMTs with a wide range of initial threading dislocation defectiveness, they found that the pre-irradiation material quality had no effect on radiation response.

Additionally, the team discovered that the order-of-magnitude difference in radiation tolerance between gallium arsenide- and gallium nitride-based HEMTs is much too large to be explained by differences in binding energy. Instead, they noticed that radiation-induced disorder causes the carrier mobility to decrease and the scattering rate to increase as expected, but the carrier concentration remains significantly less affected than it should be.

(more…)

A recently published article in Science discusses findings from a study done on the Thomson Reuters Journal Impact Factor (JIF).

The study concluded that “the [JIF] citation distributions are so skewed that up to 75% of the articles in any given journal had lower citation counts than the journal’s average number.”

The impact factor, which has been used as a measurement tool by authors and institutions to help decided everything from tenure to allocation of grant dollars, has come under much criticism in the past few years. One problem associate with impact factors, as discussed in the Science article, is how the number is calculated and can be misrepresented.

Essentially, the impact factor of a journal is the average number of times the journal’s article is cited over the past two years. However, this number becomes skewed when a very small handful of papers get huge citation numbers, while the majority of papers published get low or no citations. The study argues that because of this, the impact factor is not necessarily a reliable predictive measure of citations.

The second problem discussed in the study is the lack of transparency associated with the calculation methods deployed by Thomson Reuters.

But, no matter what happens with the JIF, as David Smith, academic publishing expert, says in the article, the true problem isn’t with the JIF, it’s “the way we thing about scholarly progress that needs work. Efforts and activity in open science can lead the way in the work.”

Learn more about ECS’s commitment to open access and the Society’s Free the Science initiative: a business-model changing initiative that will make our research freely available to all readers, while remaining free for authors to publish.

UPDATE: Thomson Reuters announced on July 11 in a press release that the company will sell its Intellectual Property & Science business to Onex and Baring Asia for $3.55 billion. Learn more about this development.

By now it’s likely that everyone’s heard of ORCID IDs, whether or not you’ve chosen to create one. While I can sing the praises of ORCID over and over again, I think for ORCID the proof is in the pudding (as they say).

I contacted 7 ECS authors with pristine ORCID records and asked them a few questions about the usefulness, maintenance required, and learning curve.

Dr. Sigita Trabesinger
orcid.org/0000-0001-5878-300X
Mr. Anthony Wood
orcid.org/0000-0002-5952-8083
Prof. Xianhua Liu
orcid.org/0000-0001-5496-3011
Dr. Ji-Won Son
orcid.org/0000-0002-5310-0633
Prof. Naoaki Yabuuchi
orcid.org/0000-0002-9404-5693
Dr. Shelley Minteer
orcid.org/0000-0002-5788-2249
Dr. Adam Weber
orcid.org/0000-0002-7749-1624

  1. How did you find out about ORCID?
  1. In some manuscript submission systems, such as ECS, Elsevier EES and PLOS, there are links to ORCID.
  2. It started showing up as an option to link on journal submission websites and I didn’t really understand it, so I went to their website.
  3. From colleagues.
(more…)

Michael Faraday notebooks

Image: Wikimedia Commons

Michael Faraday is a household name to those in the science, but the breadth and depth of his pioneering work is sometimes overlooked in lieu of modern day developments. In an effort to preserve and highlight the enormous impact of Faraday’s work, the UNESCO has announced that the pillar of electrochemistry’s notebooks (held by the Royal Institution) have been added to the UK Memory of the World Register.

The Memory of the World Register was established in 1992 and is a catalogue of the world’s most prized documentary and audiovisual heritage. Faraday’s notebooks will join the ranks of documents such as the Magna Carta and the Death Warrant of King Charles I.

The significance of notebooks lies in Faraday’s documentation and development of some of the most important physical and chemical discoveries of the 19th century. Many have referred to Faraday as one of the greatest experimentalists ever, especially due to his work on electricity that found expression in day-to-day technology. His work on electromagnetic rotations and induction transformed electrical devices as we know them, opening the door for the development of motors, transformers, and generators.

(more…)