Deadlines Fast Approaching

DeadlineEach year ECS provides for and facilitates the use of thousands of dollars to support students and early career researchers in efforts to advance electrochemistry and solid state science.

Several fellowship and grant applications are due over the next few weeks:

Deadline: January 15
Summer Fellowships – up to four $5,000 fellowships are available. Complete the PDF application available and submit it in the ECS awards portal under Student Awards for ECS Summer Fellowships.

Colin Garfield Fink Summer Fellowship – one $5,000 fellowship available. Complete the PDF application available and submit it in the ECS awards portal under Society Awards for the Colin Garfield Fink Summer Fellowship.

(more…)

Posted in Programs

The following article was originally published in the winter 2017 issue of Interface.

Winter 2017 InterfaceBy: Johna Leddy, ECS President

“It is all about power. If you have power, you have water. If you have water, you have food. If you have food, you can go to school. If you go to school, you have tools to think. If you have access and tools to think, you can learn those next door are not so different. You can work together to mitigate energy disparates and so reduce conflict. It is all about power.”

-ECS satellite OpenCon, October 2017

ECS looks to its future as a forum for research and a conduit for access and communication. Tenets of the scientific method are invariant, but practice of communication and access change. Change is driven by gradients. Without gradients, energy is minimized and the system dies, but if gradients are too steep, the system becomes unstable. History maps conflicts over energy and power. Early wars were over land for food energy. Distribution of natural resources and oil sustain conflicts for thermal energy. Gradients in energy distribution drive change and conflict. Going forward, access to critical materials and information, coupled with the skills and imagination to develop advanced technologies, will mitigate steep gradients in energy distribution.

(more…)

Fuel CellNitrogen-doped carbon nanotubes or modified graphene nanoribbons could be effective, less costly replacements for expensive platinum in fuel cells, according to a new study.

In fuel cells, platinum is used for fast oxygen reduction, the key reaction that transforms chemical energy into electricity.

The findings come from computer simulations scientists created to see how carbon nanomaterials could be improved for fuel-cell cathodes. Their study reveals the atom-level mechanisms by which doped nanomaterials catalyze oxygen reduction reactions (ORR).

Doping with nitrogen

Boris Yakobson, a professor of materials science and nanoengineering and of chemistry at Rice University, and his colleagues are among many researchers looking for a way to speed up ORR for fuel cells, which were discovered in the 19th century but not widely used until the latter part of the 20th. Fuel cells have since powered transportation modes ranging from cars and buses to spacecraft.

(more…)

Many areas of the United States are at risk for nitrate and nitrite contamination of drinking water due to overuse of agricultural fertilizers. Click to enlarge.
Image: USGS

Researchers have found a catalyst that can clean toxic nitrates from drinking water by converting them into air and water.

“Nitrates come mainly from agricultural runoff, which affects farming communities all over the world,” says lead study scientist Michael Wong, a chemical engineer at Rice University.

“Nitrates are both an environmental problem and health problem because they’re toxic. There are ion-exchange filters that can remove them from water, but these need to be flushed every few months to reuse them, and when that happens, the flushed water just returns a concentrated dose of nitrates right back into the water supply,” he explains.

Wong’s lab specializes in developing nanoparticle-based catalysts, submicroscopic bits of metal that speed up chemical reactions. In 2013, his group showed that tiny gold spheres dotted with specks of palladium could break apart nitrites, the more toxic chemical cousins of nitrates.

(more…)

SemiconductorObjects with “negative mass” react to the application of force in exactly the opposite way from what you would expect.

Researchers have created particles with negative mass in an atomically thin semiconductor, by causing it to interact with confined light in an optical microcavity.

This alone is “interesting and exciting from a physics perspective,” says Nick Vamivakas, an associate professor of quantum optics and quantum physics at the University of Rochester’s Institute of Optics. “But it also turns out the device we’ve created presents a way to generate laser light with an incrementally small amount of power.”

The device, described in Nature Physics, consists of two mirrors that create an optical microcavity, which confines light at different colors of the spectrum depending on the spacing of the mirrors.

Researchers in Vamivakas’ lab, including co-lead authors Sajal Dhara (now with the Indian Institute of Technology) and PhD student Chitraleema Chakraborty, embedded an atomically thin molybdenum diselenide semiconductor in the microcavity.

(more…)

By: Richard Gunderman, Indiana University

Nikola TeslaMatch the following figures – Albert Einstein, Thomas Edison, Guglielmo Marconi, Alfred Nobel and Nikola Tesla – with these biographical facts:

1. Spoke eight languages

2. Produced the first motor that ran on AC current

3. Developed the underlying technology for wireless communication over long distances

4. Held approximately 300 patents

5. Claimed to have developed a “superweapon” that would end all war

The match for each, of course, is Tesla. Surprised? Most people have heard his name, but few know much about his place in modern science and technology.

The 75th anniversary of Tesla’s death on Jan. 7 provides a timely opportunity to review the life of a man who came from nowhere yet became world famous; claimed to be devoted solely to discovery but relished the role of a showman; attracted the attention of many women but never married; and generated ideas that transformed daily life and created multiple fortunes but died nearly penniless.

(more…)

PlantSensors on tape that attach to plants yield new kinds of data about water use for researchers and farmers.

“With a tool like this, we can begin to breed plants that are more efficient in using water,” says Patrick Schnable, plant scientist at Iowa State University. “That’s exciting. We couldn’t do this before. But, once we can measure something, we can begin to understand it.”

The tool making these water measurements possible is a tiny graphene sensor that can be taped to plants—researchers call it a “plant tattoo sensor.” Graphene is an atom-thick carbon honeycomb. It’s great at conducting electricity and heat, and is strong and stable. The graphene-on-tape technology in this study has also gone into wearable strain and pressure sensors, including sensors for a “smart glove” that measures hand movements.

(more…)

Membership Intern Spotlight

Alyssa Doyle

Alyssa Doyle, ECS membership intern

My name is Alyssa Doyle, and I had the privilege of interning with The Electrochemical Society’s Membership Services Department for a semester. When I first began my internship in August of 2017, I wasn’t sure exactly what to expect. I wasn’t all that familiar with nonprofit operations, and as a junior English major at The College of New Jersey, I knew practically nothing about electrochemistry. I’m going to be honest—I was quite nervous, but I was also incredibly excited by the prospect of acquiring knowledge about an entirely new subject.

From the moment I arrived, I was quickly immersed in ECS’s mission and culture. I learned a lot about ECS’s Free the Science campaign, and as a student who is interested in publishing, I was intrigued by the possibility of open access. When I first heard about the initiative, I deeply admired ECS for their desire to provide free research to people across the world with the hopes of increasing the sustainability of the planet—I still do, but now even more so.

Throughout my internship, I worked on various rewarding, engaging, and meaningful projects—there’s no getting coffee here. Instead, I had the chance to write blog posts about award winners and upcoming ECS meetings and events, and I was able to participate in the preparation for the 232nd ECS Meeting in National Harbor by completing mini projects, such as creating volunteer schedules, confirming registrants, and writing bios for speakers. I also had the opportunity to work on longer projects as well by maintaining contact with ECS’s 67 student chapters and creating a list of prospective employers to reach out to about ECS’s Career Expo. Even within the last week at my internship, I put together a timeline of the Edward Acheson Award and had the chance to read through Transactions of the American Electrochemical Society from 1903 onward. Each project was incredibly fascinating, and I started each day ready to tackle a new task.

(more…)

Posted in Membership

Tech Highlights

ECS journalsThis article was originally published in the winter 2017 issue of Interface.

Tech Highlights was prepared by David Enos and Mike Kelly of Sandia National Laboratories, Colm Glynn and David McNulty of University College Cork, Ireland, Zenghe Liu of Verily Life Science, and Donald Pile of Rolled-Ribbon Battery Company. Each article highlighted here is available free online.

Mechanical Pre-Lithiation of Silicon Anodes for Lithium Ion Batteries

Low Initial Coulombic Efficiency (ICE) continues to be a significant issue for the practical use of alloying materials, such as Si and Ge, as anodes and particularly for their implementation in full Li-ion cells. It is imperative to develop methods to improve ICE to mitigate issues associated with the consumption of electrolyte and the loss of Li during initial cycling. Several methods
to improve ICE have been examined, including studying the effects of active material particle size and the use of various electrolyte additives such as vinylene carbonate. The prelithiation of anode materials has also been investigated using two different approaches—electrochemical and mechanical prelithiation. Researchers from the University of Tottori have reported on the formation of a crystalline Li-Si alloy phase via a mechanical alloying (MA) method. Read the full article.

(more…)

By: Jalees Rehman, University of Illinois at Chicago

ResearchIn a recent survey of over 1,500 scientists, more than 70 percent of them reported having been unable to reproduce other scientists’ findings at least once. Roughly half of the surveyed scientists ran into problems trying to reproduce their own results. No wonder people are talking about a “reproducibility crisis” in scientific research – an epidemic of studies that don’t hold up when run a second time.

Reproducibility of findings is a core foundation of science. If scientific results only hold true in some labs but not in others, then how can researchers feel confident about their discoveries? How can society put evidence-based policies into place if the evidence is unreliable?

Recognition of this “crisis” has prompted calls for reform. Researchers are feeling their way, experimenting with different practices meant to help distinguish solid science from irreproducible results. Some people are even starting to reevaluate how choices are made about what research actually gets tackled. Breaking innovative new ground is flashier than revisiting already published research. Does prioritizing novelty naturally lead to this point?

(more…)