ECS will be offering five short courses at the 229th ECS Meeting this year in San Diego.

What are short courses? Taught by academic and industry experts in intimate learning settings, short courses offer students and professionals alike the opportunity to greatly expand their knowledge and technical expertise. 

Short Course #1: Basic Corrosion for Electrochemists

Luis F. Garfias-Mesias, Instructor

This course covers the basics of corrosion science and corrosion engineering. It is targeted toward people with a physical sciences or engineering background who have not been trained as corrosionists, but who want to understand the basic concepts of corrosion, learn to select the appropriate materials an know which will be the typical techniques and methodologies to test and qualify materials (resistant to corrosion).

The course will begin with a general, basic foundation of electrochemistry and corrosion. It will cover the typical engineering materials (metals, non-metals, composites, etc.) and their interaction with their environment (temperature, pressure, gasses, liquids, etc.) and the common methodologies to prevent and control their degradation (material selection, adding inhibitors, applying a protective coating, using cathodic or anodic protection, etc.). Basic knowledge of corrosion monitoring and inspection as well as field and laboratory testing will be covered.

(more…)

229th ECS Meeting: Student Mixer!

Don’t miss out on one of the most popular and rewarding events of the 229th ECS Meeting—the Student Mixer!

Sponsored by Bio-Logic, the Student Mixer will be held in Sapphire Ballroom D of the Hilton in San Diego from 6:30 p.m. to 8:30 p.m. on May 30, 2016.

biologic_usa_229

Attended by distinguished ECS members and staff, the Student Mixer offers the perfect opportunity to network and socialize with industry experts, fellow students, and like-minded thinkers.

Student Mixer at 228th ECS Meeting

 

The Student Mixer is a ticketed event. Add a ticket to your meeting registration or contact customerservice@electrochem.org for more information. Tickets are discounted for student members. Registration info

ECS Student Member Price: $5.00
Student Non-Member Price: $15.00

Not a student member? Join today to receive additional discounts on your registration as well as this exciting event!

Tickets are limited and likely to sell out, so purchase yours today!

Recent Progress in Renewable Energy Generation, Distribution, and Storage

PRiME 2016 | Sunday, Oct. 2, 2016 | Honolulu, Hawaii

Prepping for PRiME

Our meetings team was just in Hawaii prepping for PRiME!
See more here.

The ECS Electrochemical Energy Summit (E2S) brings together policy makers and researchers as a way of educating attendees about the critical issues of energy needs and the pivotal research in electrochemical energy that will impact our planet’s sustainability.

The 6th International ECS Electrochemical Energy Summit will focus around Recent Progress in Renewable Energy Generation, Distribution, and Storage.

(MORE: Watch presentations from the 5th International E2S.)

The program will include keynote presentations and remarks from DOE, NEDO, KIER, and the Hawaii State Energy Office followed by a poster session showcasing research, advancements, and technologies within the clean energy sector. There will be networking opportunities and associated receptions.

Chair

Boryann Liaw, Hawaii Natural Energy Institute

Organizers

Adam Weber, Lawrence Berkeley National Laboratory
Hiroyuki Uchida, University of Yamanashi
Won-Sub Yoon, Sungkyungkwan University
Mark Glick, Hawaii State Energy Administrator

Interested in participating in the E2S Poster Session?

The poster session Z03 is designed to provide a platform of networking with other scientists, technologists, stakeholders and policy makers through information exchange and live discussion. The session welcomes contributions from private or governmental organizations, research groups, and industrial manufacturing and service providers that are engaging in the renewable energy technology and business development, implementation or promotion and interesting in sharing their work, ideas, and results with the participants of the PRiME 2016 meeting.

Submit your E2S poster abstract by April 15, 2016 at
https://ecs.confex.com/ecs/230/cfp.cgi

Graphene is at it again, outperforming all known materials (including superconductors) in a recent study testing the transmission of high frequency electrical signals.

The researchers found that when the electrical signals pass through graphene, none of the energy is lost – opening the door to a new realm of electrical transmission.

This from the University of Plymouth:

And since graphene lacks band-gap, which allows electrical signals to be switched on and off using silicon in digital electronics, academics say it seems most applicable for applications ranging from next generation high-speed transistors and amplifiers for mobile phones and satellite communications to ultra-sensitive biological sensors.

Read the full article.

“An accurate understanding of the electromagnetic properties of graphene over a broad range of frequencies (from direct current to over 10 GHz) has been an important quest for several groups around the world,” said Shakil Awan, leader of the study. “Initial measurements gave conflicting results with theory because graphene’s intrinsic properties are often masked by much larger interfering signals from the supporting substrate, metallic contacts and measurement probes. Our results for the first time not only confirm the theoretical properties of graphene but also open up many new applications of the material in high-speed electronics and bio-sensing.”

(more…)

With a robust career in academia, Daniel Scherson has touched many aspects of science and worked with many notable pillars of electrochemistry. From his work on nonlinear, non-equilibrium thermodynamics with Joel Keizer to his work with Heniz Gerischer and Dieter Kolb at the Fritz Haber Institute — Scherson’s career has been shaped by some of the leaders in the field.

He joined Case Western Reserve University in 1983, where his research focuses on bettering device such a fuel cells, batteries, and electrosynthetic reactors. Scherson has been featured by many for the development of the “cyborg cockroach” that produces energy.

Listen to the podcast and download this episode and others for free through the iTunes Store, SoundCloud, or our RSS Feed. You can also find us on Stitcher.

(more…)

An interdisciplinary team, including 32 year ECS member Stuart Licht and ECS student member Matthew Lefler, has developed a way to make electric vehicles that are not only carbon neutral, but carbon negative – capable of reducing the amount of atmospheric carbon dioxide as they operate by transforming the greenhouse gas.

By replacing the graphite electrodes that are currently being used in the development of lithium-ion batteries for electric cars with carbon materials recovered from the atmosphere, the researchers have been able to develop a recipe for converting collected carbon dioxide into batteries.

This from Vanderbilt University:

The team adapted a solar-powered process that converts carbon dioxide into carbon so that it produces carbon nanotubes and demonstrated that the nanotubes can be incorporated into both lithium-ion batteries like those used in electric vehicles and electronic devices and low-cost sodium-ion batteries under development for large-scale applications, such as the electric grid.

Read the full article.

The research is not the first time scientists have shown progress in collecting and converting harmful greenhouse gases from the environment.

Typically, carbon dioxide conversion revolves around transforming the gas into low-value fuels such as methanol. These conversions often do not justify the costs.

(MORE: Read “Carbon Nanotubes Produced from Ambient Carbon Dioxide for Environmentally Sustainable Lithium-Ion and Sodium-Ion Battery Anodes.“)

However, the new process produces better batteries that are not only expected to be efficient, but also cost effective.

(more…)

Looking to save on electricity? Why not use bioluminescent bacteria to light the way?

Innovative start-up Glowee is looking to do just that to illuminate the streets of Paris. By using bacteria found in squid, Glowee is producing lights that consist of transparent gases filled with a gel containing the bioluminescent bacteria alongside the sugars and oxygen they need to survive.

The bio-lights will allow cities to cut back on energy and avoid light pollution. With lower electricity consumption comes considerably less carbon dioxide emissions.

Currently, the company is looking to increase lifespan and efficiency before implementing the technology.

ecstA new issue of ECS Transactions has just been published: Fuel Cell Seminar & Energy Exposition 2015.

The papers in this issue of ECST were presented in Los Angeles, CA on Nov. 11-16, 2015. ECST Volume 71, Issue 1 can be found here.

This is the first ECST publication to be made available via download in the ECS Online Store. You may purchase this issue as a full text PDF download here.

MIT researcher have developed the first steps to creating the thinnest, lightest solar cell ever made.

Through a unique fabrication method, the researchers are moving toward the development of a solar cell so thin it could blow away. Instead of a solar cell’s typical makeup, the MIT researchers have opted for a unique fabrication of creating each layer at the same time.

This from Popular Science:

Solar cells are typically made up of layers of photovoltaic materials and a substrate, such as glass or plastic. Instead of the usual method of fabricating each layer separately, and then depositing the layers onto the substrate, the MIT researchers made all three parts of their solar cell (the cell, the supportive substrate, and the protective coating) at the same time, a method that cuts down on performance-harming contaminants. In the demonstration, the substrate and coating are made from parylene, which is a flexible polymer, and the component that absorbs light was made from dibutyl phthalate (DBP). The researchers note that the solar cell could be made from a number of material combinations, including perovskite, and it could be added to a variety of surfaces such as fabric or paper.

Read the full article.

To put the thinness of the solar cell in perspective, it is approximately 1/50th the thickness of a strand of hair. The light weight means that its power-to-weight ratio is particularly high, with an efficiency output of about 6 watts per gram (400 times higher than silicon-based solar cells).

The final trial for the researcher will be to translate the lab work to the real world, making it scalable and practical for commercial use.

Researchers have found a way to use rust to build a solar-powered battery.Image: Flickr

Researchers have found a way to use rust to build a solar-powered battery.
Image: Diego Torres Silvestre

What happens when corrosion meets energy? For researchers at Stanford University, the marriage of those two uniquely electrochemical topics could yield an answer to large-scale solar power storage.

The question of how to store solar power when the sun goes down has been on the forefront of scientific discussion. While electrochemical energy storage devices exist, they are typically either too expensive to work on a large-scale or not efficient enough.

Building a solar-powered battery

New research shows that metal oxides, such as rust, can be fashioned into solar cells capable of splitting water into hydrogen and oxygen. The research could be looked at revelatory, especially when considering large-scale storage solutions, because of its novel heat attributes.

While we knew the promising solar power potential of metal oxides before, we believed that the efficiency of cells crafted from these materials would be very low. The new study, however, disproves that theory.

The team showed that as the cells grow hotter, efficiency levels increase. This is a huge benefit when it comes to large-scale, solar energy conversion and it the polar opposite of the traditional silicon solar cell.

“We’ve shown that inexpensive, abundant, and readily processed metal oxides could become better producers of electricity than was previously supposed,” says William Chueh, an assistant professor of materials science and engineering.

(more…)