BatteryResearchers from Columbia University School of Engineering and Applied Science recently developed a method that could result in safer, longer-lasting, bendable lithium-ion batteries. To do this, the team applied ice-templating to control the structure of the solid electrolyte for lithium-ion batteries.

Recent reports of cell phones and hoverboards bursting into flames have made people aware of the safety concerns related to the lithium-ion battery’s liquid electrolyte. The researchers behind this new work decided to confront the safety issues by exploring the use of a solid electrolyte, therefore developing an all-solid-state lithium battery.

[The researchers] were interested in using ice-templating to fabricate vertically aligned structures of ceramic solid electrolytes, which provide fast lithium ion pathways and are highly conductive. They cooled the aqueous solution with ceramic particles from the bottom and then let ice grow and push away and concentrate the ceramic particles. They then applied a vacuum to transition the solid ice to a gas, leaving a vertically aligned structure. Finally, they combined this ceramic structure with polymer to provide mechanical support and flexibility to the electrolyte.

(more…)

BatteryA team of scientists from Oak Ridge National Laboratory is using the precision of an electron beam to instantly adhere cathode coatings for lithium-ion batteries. This new development, as reported in the Journal of The Electrochemical Society, could lead to a leap in efficiency that saves energy, reduces production cost, and eliminates the use of toxic solvents.

This from ORNL:

The technique uses an electron beam to cure coating material as it rolls down the production line, creating instantaneous cross-links between molecules that bind the coating to a foil substrate, without the need for solvents, in less than a second.

Read the full article.

“Typical curing processes can require drying machinery the length of a football field and expensive equipment for solvent recovery,” says David Wood, co-author of the study. “This approach presents a promising avenue for fast, energy-efficient manufacturing of high-performance, low-cost lithium-ion batteries.”

Read the full paper, “Electron Beam Curing of Composite Positive Electrode for Li-Ion Battery.”

BatteryJoint research from the Universidad Carlos III de Madrid and the Council for Scientific Research reports the development of a new ceramic electrode for lithium-ion batteries that can lead to cheaper, more efficient, and safer conventional batteries.

“What we have patented are new ceramic electrodes that are much safer and can work in a wider temperature interval,” says Alejandro Varez, co-author of the research.

To achieve this result, the researchers made ceramic sheets by way of thermoplastic extrusion molds.

“This technique allows making electrodes that are flat or tube-shaped, and these electrodes can be applied to any type of lithium-ion battery,” Varez says.

According to the researchers, the cost of production is low and it could easily be adapted into current lithium-ion battery production, making this an easy technology to move quickly to industrialization.

(more…)

BatteryReports of a woman’s headphones catching fire while on a flight from Bejing to Melbourne has once again heightened interest in lithium-ion battery safety. According to the Australian Transport Safety Bureau, the incident occurred while the woman was sleeping mid-flight wearing battery-powered headphones.

Early in 2016, battery expert and ECS fellow, K.M. Abraham, talked to ECS about lithium-ion battery safety concerns amidst reports of exploding hoverboards. Below are some excerpts of what he had to say.

“It is safe to say that these well-publicized hazardous events are rooted in the uncontrolled release of the large amount of energy stored in lithium-ion batteries as a result of manufacturing defects, inferior active and inactive materials used to build cells and battery packs, substandard manufacturing and quality control practices by a small fraction of cell manufacturers, and user abuses of overcharge and over-discharge, short-circuit, external thermal shocks and violent mechanical impacts,” Abraham told ECS. “All of these mistreatments can lead lithium-ion batteries to thermal runaway reactions accompanied by the release of hot combustible organic solvents which catch fire upon contact with oxygen in the atmosphere.”

Read Abraham’s full article.

(more…)

BatteryTaking a detailed look inside energy storage systems could help solve potential issues before they arise. A team of researchers from Brookhaven National Laboratory are doing just that by imaging the inner workings of a sodium-metal sulfide battery, leading them to understand the cause of degraded performance.

“We discovered that the loss in battery capacity is largely the result of sodium ions entering and leaving iron sulfide—the battery electrode material we studied—during the first charge/discharge cycle,” says Jun Wang, co-author of the study. “The electrochemical reactions involved cause irreversible changes in the microstructure and chemical composition of iron sulfide, which has a high theoretical energy density. By identifying the underlying mechanism limiting its performance, we seek to improve its real energy density.”

Performance degradation in charge/discharge cycles has been the main problem researchers encounter when pursuing sodium-ion battery research. While the battery’s performance points to degradation issues, not much was previously known about what caused this degradation.

(more…)

25 Years of Lithium-ion Batteries

Focus IssuesIn June 2016, the International Meeting on Lithium Batteries (IMLB) in Chicago successfully celebrated 25 years of the commercialization of lithium-ion batteries. According to Doron Aurbach, technical editor of the Batteries and Energy Storage topical interest area of the Journal of The Electrochemical Society, research efforts in the Li-battery community continues to provide ground-breaking technological success in electromobility and grid storage applications. He hopes this research will continue to revolutionize mobile energy supply for future advances in ground transportation.

ECS has published 66 papers for a new IMLB focus issue in the Journal of The Electrochemical Society. All papers are open access at no charge to the authors and no charge to download thanks to ECS’s Free the Science initiative!

(READ: Focus Issue of Selected Papers from IMLB 2016 with Invited Papers Celebrating 25 Years of Lithium Ion Batteries)

The focus issue provides important information on the forefront of advanced battery research that appropriately reflects the findings from the symposium.

(more…)

By: Venkat Subramanian, University of Washington

This article refers to a recently published open access paper in the Journal of The Electrochemical Society, “Direct, Efficient, and Real-Time Simulation of Physics-Based Battery Models for Stand-Alone PV-Battery Microgrids.”

Renwable grid controlTesla engineered a good electric car successfully by engineering a car design that can accommodate large battery stacks. Our hypothesis is that the current grid control method, which is a derivative of traditional grid control approaches, cannot utilize batteries efficiently.

In the current microgrid control, batteries are treated as “slaves” and are typically expected to be available to meet only the power needs. Typically, if grid optimization is done at the higher level, and then batteries are used as slaves, including models that predict fade can be used in a bi-level optimization mode (optimize grid operations and at every point in time, optimize battery operation). This way of optimization will not yield the best possible outcome for batteries.

In a recently published paper, we show that real-time simulation of the entire microgrid is possible in real-time. We wrote down all of the microgrid equations in mathematical form, including photovoltaic (PV) arrays, PV maximum power point tracking (MPPT) controllers, batteries, and power electronics, and then identified an efficient way to solve them simultaneously with battery models. The proposed approach improves the performance of the overall microgrid system, considering the batteries as collaborators on par with the entire microgrid components. It is our hope that this paper will change the current perception among the grid community.

(more…)

Battery

Source: iStock

Today’s electronics consumers all have one thing in common: a desire for smartphones and other portable devices to have longer battery lives. Researchers from the University College Cork are looking to deliver just that with a new development that extends the cycle life of the lithium-ion battery to near record-length by using a key ingredient found in sunscreen.

The method, developed by ECS member and vice chair of the Society’s Electronics and Photonics Division, Colm O’Dwyer, and past members David McNulty and Elaine Carroll, uses titanium dioxide, which is a naturally occurring material capable of absorbing ultraviolet light.

When titanium dioxide is made into a porous substance, it can be charged and discharged over 5,000 times – or 13.5 years – without a drop in capacity.

(more…)

CellphoneA new paper published in the Journal of The Electrochemical Society, “Mixed Conduction Membranes Suppress the Polysulfide Shuttle in Lithium-Sulfur Batteries,” describes a new battery membrane that makes the cycle life of lithium-sulfur batteries comparable to their lithium-ion counterparts.

The research, led by ECS Fellow Sri Narayan, offers a potential solution to one of the biggest barriers facing next generation batteries: how to create a tiny battery that packs a huge punch.

Narayan and Derek Moy, co-author of the paper, believe that lithium-sulfur batteries could be the answer.

The lithium-sulfur battery has been praised for its high energy storage capacity, but hast struggled in competing with the lithium-ion battery when it comes to cycle life. To put it in perspective, a lithium-sulfur battery can be charged between 50 and 100 times; a lithium-ion battery lasts upwards of 1,200 cycles.

To address this issue, the researchers devised the “Mixed Conduction Membrane” (MCM).

(more…)

BatteryIn an effort to develop an eco-friendly battery, researchers from Ulsan National Institute of Science and Technology (UNIST) have created a battery that can store and produce electricity by using seawater.

The research is expected to dramatically improve cost and stability issues over the next five years, with researchers confident about commercialization.

The driving force behind the battery is the sodium found in seawater. Because sodium is so abundant, the researchers believe that this new system will be an attractive supplement to existing battery technologies. Because the seawater battery is cheaper and more environmentally friendly than lithium-ion batteries, the team says the seawater battery could provide an alternative option in large-scale energy storage.

This from UNIST:

Seawater batteries are similar to their lithium-ion cousins since they store energy in the same way. The battery extracts sodium ions from the seawater when it is charged with electrical energy and stores them within the cathode compartment. Upon electrochemical discharge, sodium is released from the anode and reacts with water and oxygen from the seawater cathode to form sodium hydroxide. This process provide energy to power, for instance, an electric vehicle.

(more…)