Have you ever picked up your cell, looked at the battery life, and go, “But I just charged this thing. What gives?” It’s not just you. According to The Washington Post, the smartphones battery life is getting worse. And, chances are, you’re new and upgraded 2018 smartphone’s battery life is actually worse than older models.

Phone makers have claimed to have tackled this battle by including more-efficient processors, low-power modes, and artificial intelligence to manage app drain, but it’s no secret to the battery industry that the lithium-ion batteries in smartphones have hit a plateau.

So, what gives? According to Nadim Maluf, CEO of a firm that optimizes batteries called Qnovos, batteries improve at a very slow pace, about 5 percent per year. (more…)

Photo Credit: www.HydroQuebec.com

Hydro-Québec (an ECS institutional member) and the U.S. Army Research Laboratory have announced a breakthrough in the lithium-ion battery materials field, publishing their research results in the Journal of Power Sources. Using a cathode made with new high voltage safe materials, the researchers have achieved a world first: building a 1.2 Ah lithium-ion cell with a voltage of 5 V.

“With the high voltage of this new cell, we can reach a very high energy density,” says Karim Zaghib, General Director of the Center of Excellence in Transportation Electrification and Energy Storage. “This highly desirable property can improve batteries used in a wide range of applications.” Army Research Laboratory scientists Jan Allen and Richard Jow, also inventors of this high voltage cathode material, believe that the high cell voltage can, in addition to enabling high energy density, improve the design of devices.

Lithium-ion batteries are widely used to power many electronic devices, including smartphones, medical devices and electric vehicles. Their high energy density, excellent durability and lightness make them a popular choice for energy storage. In response to the growing demand for their use in a wide range of products, there are many teams working to improve their storage capacity. In particular, there is great interest in developing new compounds that could increase energy storage capacity, stability and lifespan. That is why the innovation announced today has such a strong commercial potential.

(more…)

BatteryA collaborative team of researchers from Shinshu University in Japan have found a new way to curb some of the potential dangers posed by lithium ion batteries.

The team was led by Susumu Arai, a professor of the department of materials chemistry and head of Division for Application of Carbon Materials at the Institute of Carbon Science and Technology at Shinshu University.

These batteries, typically used in electric vehicles and smart grids, could help society realize a low-carbon future, according the authors. The problem is that while lithium could theoretically conduct electricity at high capacity, lithium also results in what is known as thermal runaway during the charge and discharge cycle.

“Lithium metal is inherently unsuitable for use in rechargeable batteries due to posing certain safety risks,” said Arai. “Repeated lithium deposition/dissolution during charge/discharge can cause serious accidents due to the deposition of lithium dendrites that penetrate the separator and induce internal short-circuiting.”

(more…)

BatteryWater-based rechargeable batteries could be one step closer to commercial viability, thanks to research from Empa. According to a new report, a team of researchers has successfully doubled the electrochemical stability of water with a special saline solution.

Energy storage is the backbone of many technological innovations. As researchers explore new ways to develop low-cost, safe batteries, the research team from Empa is looking to water to function as a battery electrolyte.

While a water-electrolyte offers many potential benefits such as low cost and high availability, it does have at least one major drawback: low chemical stability. At a voltage of 1.23 volts, a water cell supplies three times less voltage than a typical lithium-ion cell. While water-based batteries may not see an application in such technologies as electric vehicles, the team of researchers at Empa believe they could be utilized for stationary electricity storage applications.

(more…)

BatteryNew research from Sandia National Laboratory is moving toward advancing solid state lithium-ion battery performance in small electronics by identifying major obstacles in how lithium ions flow across battery interfaces.

The team of researchers, including ECS member Forrest Gittleson, looked at the nanoscale chemistry of solid state batteries, focusing on the area where the electrodes and electrolytes make contact.

“The underlying goal of the work is to make solid-state batteries more efficient and to improve the interfaces between different materials,” says Farid El Gabaly, coauthor of the recently published work. “In this project, all of the materials are solid; we don’t have a liquid-solid interface like in traditional lithium-ion batteries.”

According to El Gabaly, the faster the lithium can travel from one electrode to the other, the more efficient the batteries could be.

(more…)

BatteryA team of researchers from the Joint Center for Energy Storage Research is taking a potential major step toward developing energy dense, safe solid state magnesium-ion batteries.

This research marks another step in pursing batteries that utilize solid electrolytes, which could offer significant safety benefits over conventional lithium-ion batteries.

The work was developed out of efforts to create a magnesium battery with a liquid electrolyte. While magnesium has promising properties for energy storage, the researchers had trouble finding a viable liquid electrolyte for the technology that wouldn’t corrode.

“Magnesium is such a new technology, it doesn’t have any good liquid electrolytes,” said Gerbrand Ceder, co-author of the research and member of ECS. “We thought, why not leapfrog and make a solid state electrolyte?”

(more…)

A new bendable lithium-ion battery prototype continues delivering electricity even when cut into pieces, submerged in water, or struck with force.

“We are very encouraged by the feedback we are receiving,” says Jeffrey P. Maranchi, manager of the materials science program at the Johns Hopkins Applied Physics Laboratory. “We are not that far away from testing in the field.”

(more…)

Renewable gridJust a few months ago, business magnate Elon Musk announced that he would spearhead an effort to build the world’s largest lithium-ion battery in an effort to deliver a grid-scale battery to expand South Australia’s renewable energy supply. Now, reports state that Musk is delivering on his promise, stating that the battery is already half complete.

The battery is set to sustain 100 megawatts of power and store that energy for 129 megawatt hours. That roughly translates to enough energy to power 30,000 homes. On top of this large technological order, Musk stated that if his team could not develop the battery in 100 days or less, it would be free for the Australian transmission company.

“This serves as a great example to the rest of the world of what can be done,” Musk told an audience in Australia, as reported by ABC news. “To have that [construction] done in two months; you can’t remodel your kitchen in that period of time.”

The battery is expected to cost $39 million (USD). The operational deadline, as decided by the Australian government, is December 1, 2017.

BatteryLithium batteries made with asphalt could charge 10 to 20 times faster than the commercial lithium-ion batteries currently available.

The researchers developed anodes comprising porous carbon made from asphalt that show exceptional stability after more than 500 charge-discharge cycles.

A high-current density of 20 milliamps per square centimeter demonstrates the material’s promise for use in rapid charge and discharge devices that require high-power density.

“The capacity of these batteries is enormous, but what is equally remarkable is that we can bring them from zero charge to full charge in five minutes, rather than the typical two hours or more needed with other batteries,” says James Tour, the chair in chemistry and a professor of computer science and of materials science and nanoengineering at Rice University.

The Tour lab previously used a derivative of asphalt—specifically, untreated gilsonite, the same type used for the battery—to capture greenhouse gases from natural gas. This time, the researchers mixed asphalt with conductive graphene nanoribbons and coated the composite with lithium metal through electrochemical deposition.

(more…)

BatteryA novel compound called 3Q conducts electricity and retains energy better than other organic materials currently used in batteries, researchers report.

“Our study provides evidence that 3Q, and organic molecules of similar structures, in combination with graphene, are promising candidates for the development of eco-friendly, high capacity rechargeable batteries with long life cycles,” says Loh Kian Ping, professor in the chemistry department at NUS Faculty of Science.

Rechargeable batteries are the key energy storage component in many large-scale battery systems like electric vehicles and smart renewable energy grids. With the growing demand of these battery systems, researchers are turning to more sustainable, environmentally friendly methods of producing them. One option is to use organic materials as an electrode in the rechargeable battery.

Organic electrodes leave lower environment footprints during production and disposal which offers a more eco-friendly alternative to inorganic metal oxide electrodes commonly used in rechargeable batteries.

The structures of organic electrodes can also be engineered to support high energy storage capabilities. The challenge, however, is the poor electrical conductivity and stability of organic compounds when used in batteries. Organic materials currently used as electrodes in rechargeable batteries—such as conductive polymers and organosulfer compounds—also face rapid loss in energy after multiple charges.

(more…)

  • Page 1 of 17