Researchers around the world have been talking about the potential of “wonder material” graphene since it first entered the field of materials science. However, for all its promising theoretical potential and applications, we’ve yet to see the material make its way to the market. Now, after an announcement by Chinese-based Guangzhous OED Technologies, graphene may make its first appearance in the marketplace within the next year.

The company just announced that they have developed what they are claiming is the “world’s first graphene electronic paper.” The e-paper, which is a display device that mimics the appearance of ordinary ink on paper, is expected to be taken to further heights with this development.

This from Phys:

The group at OED claims to have developed a graphene material that is suitable for use in making e-paper. Doing so, they also claim, allows for creating screens that are more bendable and that are also brighter because they will be able to display light with more intensity. They also suggest that because the end product will be carbon based, it should be cheaper to manufacture than current e-paper products which are based on metal indium.

(more…)

Carbyne

Image: Lei Shi/Faculty of Physics, University of Vienna

The material Carbyne hit the benchtop years ago. Scientists were able to calculate the properties of this exotic material, but not able to stabilize it. Carbyne promised to be stronger and stiffer than any other material known to man, but the question of how to synthesize it remained.

Now, researchers from the University of Vienna in Austria were able to do just that. The researchers took the highly reactive, one-dimensional chain of carbon atoms and synthesized it by wrapping it in a double-walled tube of graphene that provided a protective casing, allowing the material to remain intact.

This from Gizmodo:

The record for stringing together carbon atoms like this in the past had been 100 in a row; now, the team can put 6,400 atoms together, and have them remain in a chain for as long as they want. That is, of course, as long as they sit inside the carbon Thermos. It remains to be seen how useful Carbyne will be whilst wrapped up, but for now it’s the best that researchers can achieve.

Read the full article.

While not much is known about Carbyne, the material is believed to be stronger than both graphene and diamonds, and twice the stiffness of any known material. Maybe (just maybe) this could bring us one step closer to space elevators.

Graphene’s potential seems limitless. From to patches that monitor glucose and inject treatment to water-splitting capabilities, the popularly proclaimed “wonder material” is finding a home in a host of applications. However, graphene has yet to make it wide-spread, commercial applications.

To help take graphene from the lab to society, the Graphene Flagship has been formed as a European initiative promoting collaborative research on the up-and-coming material. Recently, the initiative published a paper detailing the possibility of creating light-responsive graphene-based devices that could be applied to anything from photo-sensors to optically controllable memories.

(MORE: Listen to our podcast with nanocarbons expert Bruce Weiseman, where we talk graphene, fullerenes, and all things nano.)

This from Graphene Flagship:

The work shows how, by combining molecules capable of changing their conformation as a result of light irradiation with graphite powder, one can produce concentrated graphene inks by liquid phase exfoliation. These graphene inks can then be used to make devices which, when exposed to UV and visible light, are capable of photo-switching current in a reversible fashion.

(more…)

Bruce Weisman, chemistry and materials science professor at Rice University, is internationally recognized for his contributions to the spectroscopy and photophysics of carbon nanostructures. He is a pioneer in the field of spectroscopy, leading the discovery and interpretation of near-infrared fluorescence for semiconducting carbon nanotubes. Aside from his work at Rice University, Weisman is also the founder and president of Applied NanoFluorescence.

Weisman is currently the Division Chair of the ECS Nanocarbons Division, which will be celebrating 25 years of nanocarbons symposia at the upcoming 229th ECS Meeting in San Diego, CA, May 2016. Since starting in 1991, the symposia has totaled 5,853 abstracts at ECS biannual meetings, with Nobel Laureate Richard Smalley delivering the inaugural talk.

Listen to the podcast and download this episode and others for free through the iTunes Store, SoundCloud, or our RSS Feed. You can also find us on Stitcher.

Glucose monitoring has had a long history with electrochemical science and technology. While ECS Honorary Member Adam Heller’s continuous glucose monitoring system for diabetes management may be the first innovation that comes to mind, there is a new electrochemical bio-sensing tool on the horizon.

(WATCH: ECS Masters – Adam Heller)

Researchers have combined graphene with a tiny amount of gold to enhance the wonder material’s properties and develop a flexible skin patch to monitor blood glucose and automatically administer drugs as needed.

This from Extreme Tech:

[As] cool as a non-invasive blood-glucose monitor is, it’s nearly as revolutionary as what comes next: treatment. The patch is studded with “microneedles” that automatically cap themselves with a plug of tridecanoic acid. When high blood-glucose levels are detected, the patch heats a small heater on the needles which deforms the plug and allows the release of metformin, a common drug for treatment of type 2 diabetes. Cooling naturally restores the plug and stops drug release.

Read the full article.

This development is a huge stepping stone in the transformation of graphene as a laboratory curiosity to a real product. While it has taken a while due to the questions of the new material’s intrinsic properties, researchers believe that graphene-based products could soon be hitting the market.

Wrinkles and crumples, introduced by placing graphene on shrinky polymers, can enhance graphene's properties.Image: Brown University

Wrinkles and crumples, introduced by placing graphene on shrinky polymers, can enhance graphene’s properties.
Image: Brown University

By now we’ve heard about the seemingly endless possibilities for the wonder material graphene. The engineers at Brown University are looking to make those possibilities even more appealing through a process that could make the nanomaterial both water repellant and enhance its electrochemical properties.

The research team is looking to improve upon the already impressive graphene by wrinkling and crumpling sheets of the material by placing it on shrink polymers to enhance its properties, potentially leading to new breakthroughs in batteries and fuel cells.

This from Brown University:

This new research builds on previous work done by Robert Hurt and Ian Wong, from Brown’s School of Engineering. The team had previously showed that by introducing wrinkles into graphene, they could make substrates for culturing cells that were more similar to the complex environments in which cells grow in the body. For this latest work, the researchers led by Po-Yen Chen, a Hibbit postdoctoral fellow, wanted to build more complex architectures incorporating both wrinkles and crumples.

Read the full article.

Crumpling the graphene makes it superhydrophobic, a property that could be used to develop self-cleaning surfaces. Additionally, the enhanced electrochemical properties could be used in next-generation energy storage and production.

“You don’t need a new material to do it,” said Po-Yen Chen, co-author of the study. “You just need to crumple the graphene.”

Call for Papers: 2D Materials

Focus IssuesJSS Technical Editors: Fan Ren and Stefan De Gendt
and
Guest Editors: Lain-Jong (Lance) Li and Daniel S. P. Lau

invite you to submit to the:
JSS Focus Issue:
Properties, Devices, and Applications Based on 2D Layered Materials

Submission Deadline | May 18, 2016

This special issue of the ECS Journal of Solid State Science and Technology focuses on properties, devices, and applications of two-dimensional (2D) based materials including boron nitrides, black phosphorous, transition metal dichalcogenides/oxides, and other layered materials beyond graphene.

Review and contributed papers are welcome in the following domains:

  • Materials preparation
  • Novel growth technology
  • Growth chemistry
  • Metal contacts
  • Surface cleaning and passivation
  • Wet and dry etching
  • Device design and processing integration
  • Device Physics
  • Device and growth simulation
  • Applications of 2D material based devices and systems
  • Heterostructures based on 2D materials

Submission Deadline | May 18, 2016

Please submit manuscripts at http://ecsjournals.msubmit.net

(Be sure to specify your submission is for the JSS Focus Issue on Properties, Devices, and Applications Based on 2D Layered Materials.)

Papers accepted into this focus issue are published online within 10 days of acceptance. The issue is created online an article at a time with the final article published in October 2016.

New Semiconductor Material for Faster Electronics

The newly developed semiconductor material could eventually lead to electronic devices that are 100 percent faster.
Image: Dan Hixson/University of Utah College of Engineering

Thanks to a new development in semiconducting materials, our electronics may soon be faster all while consuming a lot less power.

The semiconductor is comprised of tin and oxygen and is only one atom thick, which allows electrical charges to move very quickly – much faster than comparable materials, such as silicon. This material also differs from conventional 3D materials, as it is 2D. The benefit of this material being 2D lies in the reduction of layers and thickness, thus allowing electronics to move faster.

This material has the ability to be applied to transistors, which are central to the majority of electronic devices.

This from the University of Utah:

While researchers in this field have recently discovered new types of 2D material such as graphene, molybdenun disulfide and borophene, they have been materials that only allow the movement of N-type, or negative, electrons. In order to create an electronic device, however, you need semiconductor material that allows the movement of both negative electrons and positive charges known as “holes.” The tin monoxide material discovered by Tiwari and his team is the first stable P-type 2D semiconductor material ever in existence.

(more…)

penn-state-materialA new material developed at Penn State could mean big things for everything from smartphones to solar cells.

For over 60 years, the main material used in transparent conductor display has been indium tin oxide. With over 90 percent of the display market utilizing this material, it has left very little room for competitor materials.

While indium tin oxide has provided solid efficiency levels at a decent price point for the past half decades, expenses have recently skyrocketed on this material.

Current electronic devices, such as smart phones and tables, are primarily priced according to display material costs. Displays and touch screen modules make up 40 percent of the cost to produce a device, greatly outpacing other essential pieces such as chips and processors. It hasn’t been until now that researchers have found a material that could potential replace indium tin oxide and potentially reduce device costs.

(more…)

World’s Most Expensive Material

The world’s most expensive material is being created in a lab and it’s going for $33,000 per 200 micrograms. To put that in perspective, that’s an astonishing $4.2 billion an ounce.

The novel material consists of molecular units called endohedral fullerenes, which are essentially a cage of carbon atoms containing nitrogen atoms.

Developers and scientists behind the material are focused on implementing the endohedral fullerenes into the development of a small, portable atomic clock. The atomic clock is the most accurate time-keeping system in the world and could assist in the accuracy of everything from a GPS to an automatic car.

“Imagine a minaturised atomic clock that you could carry around in your smartphone,” says Kriakos Porfyrakis, scientist working on the development of the material. “This is the next revolution for mobile.”

Aside from impacting cellphone technology, Porfyrakis expects the material to change transportation in a big way.

ICYMI: Learn about the early history of the Buckyball.

“There will be lots of applications for this technology,” says Lucius Cary, director of Oxford Technology SEIS fund. “The most obvious is in controlling autonomous vehicles. If two cars are coming towards each other on a country lane, knowing where they are to within 2m is not enough but to 1mm it is enough.”