The transparent bandage displays an oxygen-sensitive colormap.Credit: Li/Wellman Center for Photomedicine

The transparent bandage displays an oxygen-sensitive colormap.
Credit: Li/Wellman Center for Photomedicine

A paint-on, see-through bandage – fully equipped with oxygenation sensors – has been developed with the purpose of better aiding wounded soldiers and improving the success of surgeries to restore limbs and physical functions.

Not only does it protect wounds and burns as any bandage should, but it also enables direct measurement and mapping of tissue oxygen.

The “smart” bandage was developed by an international, multidisciplinary team of researchers led by Assistant Professor Conor L. Evans at the Wellman Center for Photomedicine of Massachusetts Generall Hospital (MGH) and Harvard Medical School (HMS). The group’s findings have been recently published in The Optical Society’s (OSA) open-access journal Biomedical Optics Express.

This from The Optical Society:

Now, the “smart” bandage developed by the team provides direct, noninvasive measurement of tissue oxygenation by combining three simple, compact and inexpensive components: a bright sensor molecule with a long phosphorescence lifetime and appropriate dynamic range; a bandage material compatible with the sensor molecule that conforms to the skin’s surface to form an airtight seal; and an imaging device capable of capturing the oxygen-dependent signals from the bandage with high signal-to-noise ratio.

(more…)

New Sensor Can Improve the Taste of Your Wine

PhD student Joana Guerreiro has taken part in developing a sensor, which has been dubbed the 'mini-mouth'.Credit: Lars Kruse, Aarhus University

PhD student Joana Guerreiro has taken part in developing a sensor, which has been dubbed the ‘mini-mouth’.
Credit: Lars Kruse, Aarhus University

The ‘mini-mouth’ – that’s what scientists have dubbed the new nanosensor that can mimic the sensation that wine creates in a person’s mouth, which then determines how a specific alcohol tastes.

This technology was created by PhD student Joana Guerreiro from Aarhus University in Denmark, and sets out to detect the level of astringency associated with a particular wine. A wine’s astringency is characterized by the dry sensation drinkers get in their mouth when they drink wine.

This from Aarhus University:

Quite specifically, the sensor is a small plate coated with nanoscale gold particles. On this plate, the researchers simulate what happens in your mouth by first adding some of the proteins contained in your saliva. After this they add the wine. The gold particles on the plate act as nano-optics and make it possible to focus a beam of light below the diffraction limit so as to precisely measure something that is very small – right down to 20 nanometres. This makes it possible to study and follow the proteins, and to see what effect the wine has. It is thereby possible to see the extent to which the small molecules have to bind together for the clumping effect on the protein to be set off.

Read the full article here.

While the technique itself is not new, the ingenuity lies in using it to create a sensor that can measure an effect rather than just the number of molecules.

This technology seems as though it would threaten the livelihood of sommeliers, but researchers say that is not what the sensor is intended for. Instead, the team at Aarhus University hopes that this will produce a tool that is useful in wine production.

Want to see what else sensors can do? Head over to our Digital Library to see the newest cutting-edge sensor research.

GM Cars Will Soon Know When You’re Distracted

Thanks in large part to scientific breakthroughs in sensors, cars have been getting smarter – and soon they’ll be able to tell if you’re distracted behind the wheel.

General Motors and Australian company Seeing Machines have landed a 15 year deal to create sensors that will detect when drivers are distracted.

Read the full article here.

This from the company news release:

The Seeing Machines’ Operator Monitoring System is based on patented eye-tracking technology that uses sensing equipment that requires no re-calibration between different drivers and tracks head alignment for potential distraction of the driver.

The sensors are another addition to the technology that could assist in the creation of the fully driverless car. With the United Services Auto Association noting that auto-breaks, collision assurance, and adaptive cruise control potentially coming to a car dealership near you, it is apparent that our cars are getting smarter.

Though we may be several decades away from these fully driverless cars, the sensor technology in automobiles is assisting in driver safety through anti-distraction technology.

“Eye and head tracking technology is the next step in automotive safety, which we expect to play a significant role in the reduction of one of the greatest causes of accidents: driver distraction,” said Ken Kroeger, CEO of Seeing Machines. “We strongly believe that the addition of driver monitoring to ADAS will deliver a significant improvement to the safety of drivers, passengers and pedestrians.”

Learn more sensor science and technology and their global impact via ECS’s Digital Library.

Sensors make Senior Independence Achievable

Lively

Technology like this pillbox sensor from Lively can help caretakers monitor people with Alzheimer’s and dementia from afar.

Sensors may be the answer to easy and accessible in-home senior care – at least that’s what the elder care tech industry is trying to achieve.

It’s no secret that the American population is greying, and with the continuing aging of the “baby boom” generation, the issue of independence at home has become a high priority. Now, seniors have to opportunity to stay in their own homes safely thanks to sensors.

This from CNN:

SmartThings is a DIY home automation system that connects sensors and smart devices with a wireless hub. In addition to sensors like those in Mary Lou’s home, the system can loop in smart thermostats, smart plugs, door locks and surveillance cameras.

(more…)

Electrochemical Detector

The device vibrates the test strip to mix the sample and reagent runs an electric current through it, and spits out the results on the screen.
Credit: Stephanie Mitchell

The researchers at Harvard University have devised a new portable device that has the ability to perform an abundance of medical tests – all thanks to electrochemistry.

“By applying a small amount of electricity to a drop of blood mixed with a reagent, the device can gauge glucose levels. The same goes for heavy metals in water, malaria antigens in blood, and sodium in urine,” researchers explained.

The beauty of the device lies in its simplicity and affordability. The total manufacturing costs comes in at $25, making it accessible to many. It also has an audio-out port, which allows users to transmit their readings via a cellphone to an online server.

(more…)

Call for Papers: Printing technologies

Printable functional materials and devices

This focus issue will cover state-of-the-art efforts that address a variety of approaches to printable functional materials and devices.

Printing technologies in an atmospheric environment offer the potential for low-cost and materials-efficient alternatives for manufacturing electronics and energy devices such as luminescent displays, thin film transistors, sensors, thin film photovoltaics, fuel cells, capacitors, and batteries.

Significant progress has been made in the area of printable functional organic and inorganic materials including conductors, semiconductors, dielectric, and luminescent materials

These will enable exciting advances in printed electronics and energy devices. Some examples are printed amorphous oxide semiconductors, organic conductors and semiconductors, inorganic semiconductor nanomaterials, silicon, chalcogenide semiconductors, ceramics, metals, intercalation compounds, and carbon-based materials.

This focus issue will cover state-of-the-art efforts that address a variety of approaches to printable functional materials and device. The focus issue will include both invited and contributed papers reflecting recent achievements. Prospective authors are encouraged to submit contributions reporting the original research results or reviewing key emerging trends in printable functional materials and devices for publication in this focus issue.

Find out more.

Sensors

Sensors detect and measure changes in position, temperature, light, etc. and they are necessary to turn billions of objects into data-generating “things” that can report on their status, and in some cases, interact with their environment.

With countless companies adopting the ever growing technology that is the Internet of Things (IoT), it is expected to grow to a multitrillion-dollar market by the year 2020.

The basic concept of IoT is to bring as many things into the digital fold as possible and create an ultimate sense of interconnection through hardware and software – but most importantly, through sensors.

(more…)

  • Page 8 of 8