As we are getting ready to go to the 231st ECS Meeting in New Orleans, we thought of some things we didn’t want you to forget!

Registration opens on Saturday at 1600h and on Sunday at 0700h at the Hilton Riverside. At registration, you’ll only need to enter your last name at the kiosk and your badge will be printed for you.

Before you leave home, go here to log in and add a short course or any ticketed event:

(more…)

By: Erin Baker, University of Massachusetts Amherst

Renewable grideThe U.S. Department of Energy spends US$3-$4 billion per year on applied energy research. These programs seek to provide clean and reliable energy and improve our energy security by driving innovation and helping companies bring new clean energy sources to market. The Conversation

President Trump’s detailed budget request reportedly will ask Congress to cut funding for the Energy Department’s clean energy programs by almost 70 percent, from $2 billion this year to $636 million in 2018. Clean energy advocates and environmental groups strongly oppose such drastic cuts, but some reductions are likely. Where should DOE focus its limited funding to produce the greatest energy and environmental benefits?

My colleagues Laura Diaz Anadon of Cambridge University and Valentina Bosetti of Bocconi University and I recently reviewed 15 studies that asked this question. We found a number of clean energy technologies in electricity and transportation that will help us slow climate change by reducing greenhouse gas emissions, even at lower levels of investment.

(more…)

How Many Marched for Science?

Over one million scientists and science advocates around the world took to the streets on April 22 to celebrate science and bring attention to the role it plays in improving lives, solving problems, and informing evidence-based policy.

In total, there were more than 600 marches in all 66 countries, on seven continents, and in all 50 states (including a few penguin marchers at the Monterey Bay Aquarium).

Get all the data and find out what states held the largest marches over on the March for Science’s blog.

And check out some of ECS’s pictures from the march on our Facebook page!

CellphoneThe development of the lithium-ion battery has helped enable the modern day electronics revolution, making possible everything from cellphones to laptops to electric vehicles and even grid-scale energy storage.

However, those batteries have limited lifespans. Battery expert Daniel P. Abraham is looking to address that.

“As your cellphone battery ages, you notice that you have to plug it in more often,” says Abraham, ECS member and scientist at Argonne National Laboratory. “Over a period of time, you are not able to store as much charge in the battery, and that is the process we call capacity fade.”

Abraham is a co-author of an open access paper recently published in the Journal of The Electrochemical Society, “Transition Metal Dissolution, Ion Migration, Electrocatalytic Reduction and Capacity Loss in Lithium-Ion Full Cells,” which addresses the question of why your battery doesn’t age well.

A majority of today’s electronic devices are powered by the lithium-ion battery. In order for the battery to store and release energy, lithium ions move back and forth between the positive and negative electrodes through an electrolyte.  In theory, the ions could travel back and forth an infinite number of times, resulting in a battery that lasts forever.

But that’s not what happens in the batteries that power your laptops and your electric vehicles. According to Abraham, unwanted side reactions often occur as ions move between the electrodes, resulting in batteries that lose capacity over time.

(more…)

By: Joshua D. Rhodes, University of Texas at Austin; Michael E. Webber, University of Texas at Austin; Thomas Deetjen, University of Texas at Austin, and Todd Davidson, University of Texas at Austin

SolarU.S. Secretary of Energy Rick Perry in April requested a study to assess the effect of renewable energy policies on nuclear and coal-fired power plants. The Conversation

Some energy analysts responded with confusion, as the subject has been extensively studied by grid operators and the Department of Energy’s own national labs. Others were more critical, saying the intent of the review is to favor the use of nuclear and coal over renewable sources.

So, are wind and solar killing coal and nuclear? Yes, but not by themselves and not for the reasons most people think. Are wind and solar killing grid reliability? No, not where the grid’s technology and regulations have been modernized. In those places, overall grid operation has improved, not worsened.

To understand why, we need to trace the path of electrons from the wall socket back to power generators and the markets and policies that dictate that flow. As energy scholars based in Texas – the national leader in wind – we’ve seen these dynamics play out over the past decade, including when Perry was governor.

(more…)

New research out of the University of Florida shows a new 3D printing technology that could lead to strong, flexible, affordable medical implants.

Through this new process for the use of 3D printing and soft silicone, the researchers believe items that millions of patients use could be more easily manufactured, ranging from implantable bands to soft catheters to slings.

This from the University of Florida:

These kinds of devices are currently molded, which can take days or even weeks to create customized parts designed to fit an individual patient. The 3D-printing method cuts that time to hours, potentially saving lives. What’s more, extremely small and complex devices, such as drainage tubes containing pressure-sensitive valves, simply cannot be molded in one step.

The new method allows them to be printed.

(more…)

ECS student chaptersAalborg University help connect young scientists to a robust local research network. With nearly 70 chapters established worldwide, students gain access to networking, collaboration, and educational opportunities. The ECS Aalborg University Student Chapter is one of three new chapters chartered by the ECS Board of Directors on March 7, 2017. The chapter’s president, Vaclav Knap, believes establishing the student chapter will help unite students working in the different areas of electrochemical and solid state science.

“The main goal was to bring students together,” Knap says. “At our department, the electrochemical oriented topics, such as batteries, fuel cells, and electrolyzers, are minorities. Therefore the idea was to bring the students from these areas closer together to support each other. Moreover, the ECS chapter is a great platform to further learn, promote our topics, and gain additional skills.”

Knap began forming the ECS Aalborg University Student Chapter in the summer of 2016, shortly after he joined the Society. Much of the inspiration to establish the chapter came when Knap attended the ECS sponsored Advanced Batteries, Accumulators and Fuel Cells (ABAF) Conference, where he was able to interact with ECS members such as Petr Vanysek and Jiri Vondrak and learn of the advantages that student chapters could offer.

(more…)

Access to clean drinking water remains an issues around the globe, with 663 million people lacking access to safe water sources. Current scientific methods that work to remove small and diluted pollutants from water tend to be either energy or chemical intensive. New research from a team at MIT provides insight into a new process of removing even extremely low levels of unwanted compounds.

This from MIT:

The system uses a novel method, relying on an electrochemical process to selectively remove organic contaminants such as pesticides, chemical waste products, and pharmaceuticals, even when these are present in small yet dangerous concentrations. The approach also addresses key limitations of conventional electrochemical separation methods, such as acidity fluctuations and losses in performance that can happen as a result of competing surface reactions.

(more…)

GrapheneA quantum probe based on an atomic-sized “color center” in diamonds has let researchers observe the flow of electric currents in graphene.

Made up of a lattice of carbon atoms only one atom thick, graphene is a key material for the electronics of the future. The thin carbon material is stronger than steel and due to its flexibility, transparency, and ability to conduct electricity, holds great promise for use in solar cells, touch panels, and flexible electronics.

No one has been able to see what is happening with electronic currents in graphene, says Lloyd Hollenberg, professor at the University of Melbourne and deputy director of the Centre for Quantum Computation and Communication Technology.

According to Hollenberg, this new technique overcomes significant limitations with existing methods for understanding electric currents in devices based on ultra-thin materials.

(more…)

JSS CoverDeadline: June 14, 2017

ECS is seeking to fill the position of Technical Editor in the Dielectric Science & Materials Topical Interest Area for the ECS Journal of Solid State Science and Technology (JSS).

The Dielectric Science & Materials (DSM) Topical Interest Area (TIA) includes theoretical and experimental aspects of inorganic and organic dielectric materials, including electrical, physical, optical, and chemical properties. Specific topics include growth processes; reliability; modeling and property measurements; polarizability; bulk and interfacial properties; interphases; reaction kinetics; phase transformations; thermodynamics; electric and ionic transport; polymers; high k, low k, and embedded dielectrics; porous dielectrics; thin and ultra-thin films.

JSS has been in existence since 2012. It was created as an outgrowth of the Journal of The Electrochemical Society (JES) to deal more exclusively in solid state topics. JES and JSS provide unparalleled opportunities to disseminate basic research and technology results in electrochemical and solid state science and technology. JSS publishes a minimum of 14 regular and focus issues each year. All ECS journals offer author choice open access.

ECS maintains 13 TIAs, and there is one Technical Editor (TE) for each TIA, supported by Associate Editors and an editorial advisory board. TEs for the ECS journals ensure the publication of original, significant, well-documented, rigorously peer-reviewed articles that meet the objectives of the relevant journal, and are within the scope of the Society’s TIAs.

(more…)

  • Page 1 of 49